summaryrefslogtreecommitdiff
path: root/Solid_State_Physics_by_Dr._M._Arumugam/Chapter13_Nvp3wKs.ipynb
blob: 558f6667444dc4b611016b8b86a6c84b1b440345 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 13: Fiber Optics"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 1, Page number 13.19"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "critical angle is 78.5 degrees\n",
      "numerical aperture is 0.3\n",
      "acceptance angle is 17.4 degrees\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "n2=1.47;              #refractive index of cladding\n",
    "n1=1.5;    #refractive index of core\n",
    "\n",
    "#Calculation\n",
    "phi_c=math.asin(n2/n1);     #critical angle(radian)\n",
    "phi_c=phi_c*180/math.pi;    #critical angle(degrees)\n",
    "NA=math.sqrt(n1**2-n2**2);     #numerical aperture\n",
    "phi_max=math.asin(NA);       #acceptance angle(radian)\n",
    "phi_max=phi_max*180/math.pi;    #acceptance angle(degrees)\n",
    "\n",
    "#Result\n",
    "print \"critical angle is\",round(phi_c,1),\"degrees\"\n",
    "print \"numerical aperture is\",round(NA,1)\n",
    "print \"acceptance angle is\",round(phi_max,1),\"degrees\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 2, Page number 13.19"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "total number of guided modes is 490\n",
      "number of modes propagated inside fibre is 245\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "d=50*10**-6;     #diameter(m)\n",
    "NA=0.2;      #numerical aperture(m)\n",
    "lamda=1*10**-6;    #wavelength(m)\n",
    "\n",
    "#Calculation\n",
    "N=4.9*(d*NA/lamda)**2;     #total number of guided modes\n",
    "Nf=N/2;                    #number of modes propagated inside fibre\n",
    "\n",
    "#Result\n",
    "print \"total number of guided modes is\",int(N)\n",
    "print \"number of modes propagated inside fibre is\",int(Nf)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 3, Page number 13.19"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "total number of guided modes is 1\n",
      "it is a single mode propagation\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "d=5*10**-6;     #diameter(m)\n",
    "n2=1.447;              #refractive index of cladding\n",
    "n1=1.45;    #refractive index of core\n",
    "lamda=1*10**-6;    #wavelength(m)\n",
    "\n",
    "#Calculation\n",
    "NA=math.sqrt(n1**2-n2**2);      #numerical aperture\n",
    "N=4.9*(d*NA/lamda)**2;     #total number of guided modes\n",
    "\n",
    "#Result\n",
    "print \"total number of guided modes is\",int(N)\n",
    "print \"it is a single mode propagation\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 4, Page number 13.19"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "numerical aperture is 0.46\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "n1=1.46;    #refractive index of core\n",
    "delta=0.05;    #refractive index difference\n",
    "\n",
    "#Calculation\n",
    "NA=n1*math.sqrt(2*delta);     #numerical aperture\n",
    "\n",
    "#Result\n",
    "print \"numerical aperture is\",round(NA,2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 5, Page number 13.20"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "V number is 94.72\n",
      "maximum number of modes is 4486\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "a=50;\n",
    "n2=1.5;              #refractive index of cladding\n",
    "n1=1.53;    #refractive index of core\n",
    "lamda0=1;    #wavelength(micro m)\n",
    "\n",
    "#Calculation\n",
    "V_number=round(2*math.pi*a*math.sqrt(n1**2-n2**2)/lamda0,2);     #V number\n",
    "n=V_number**2/2;     #maximum number of modes\n",
    "\n",
    "#Result\n",
    "print \"V number is\",V_number\n",
    "print \"maximum number of modes is\",int(round(n))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 6, Page number 13.20"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "total number of modes is 49178\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "a=100*10**-6;\n",
    "NA=0.3;      #numerical aperture(m)\n",
    "lamda=850*10**-9;    #wavelength(m)\n",
    "\n",
    "#Calculation\n",
    "V_number=round(2*math.pi**2*a**2*NA**2/lamda**2);     #number of modes\n",
    "\n",
    "#Result\n",
    "print \"total number of modes is\",int(2*V_number)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 7, Page number 13.20"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "cutoff wavelength is 1.315 micro m\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "a=25*10**-6;\n",
    "n1=1.48;    #refractive index of core\n",
    "delta=0.01;    #refractive index difference\n",
    "V=25;     #Vnumber\n",
    "\n",
    "#Calculation\n",
    "lamda=2*math.pi*a*n1*math.sqrt(2*delta)/V;      #cutoff wavelength(m)\n",
    "\n",
    "#Result\n",
    "print \"cutoff wavelength is\",round(lamda*10**6,3),\"micro m\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 8, Page number 13.20"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "maximum value of core radius is 9.95 micro m\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "V=2.405;     #Vnumber\n",
    "lamda=1.3;    #wavelength(micro m)\n",
    "NA=0.05;      #numerical aperture(m)\n",
    "\n",
    "#Calculation\n",
    "amax=V*lamda/(2*math.pi*NA);     #maximum value of core radius(micro m)\n",
    "\n",
    "#Result\n",
    "print \"maximum value of core radius is\",round(amax,2),\"micro m\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 9, Page number 13.21"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "acceptance angle for meridional rays is 17.46 degrees\n",
      "acceptance angle for skew rays is 25.104 degrees\n",
      "answer for acceptance angle for skew rays given in the book is wrong\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "NA=0.3;      #numerical aperture(m)\n",
    "gama=45*math.pi/180;     #angle(radian)\n",
    "\n",
    "#Calculation\n",
    "thetaa=math.asin(NA);       #acceptance angle for meridional rays(radian)\n",
    "thetaa=thetaa*180/math.pi;  #acceptance angle for meridional rays(degrees)\n",
    "thetaas=math.asin(NA/math.cos(gama));     #acceptance angle for skew rays(radian)\n",
    "thetaas=thetaas*180/math.pi;   #acceptance angle for skew rays(degrees)\n",
    "\n",
    "#Result\n",
    "print \"acceptance angle for meridional rays is\",round(thetaa,2),\"degrees\"\n",
    "print \"acceptance angle for skew rays is\",round(thetaas,3),\"degrees\"\n",
    "print \"answer for acceptance angle for skew rays given in the book is wrong\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 10, Page number 13.21"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "numerical aperture is 0.303\n",
      "acceptance angle is 17.633 degrees\n",
      "answer for angle given in the book varies due to rounding off errors\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "delta=0.0196;         #relative refractive index difference\n",
    "n1=1.53;              #refractive index of core\n",
    "\n",
    "#Calculation\n",
    "NA=n1*math.sqrt(2*delta);     #numerical aperture\n",
    "theta=math.asin(NA);          #acceptance angle(radian)\n",
    "theta=theta*180/math.pi;      #acceptance angle(degrees)\n",
    "\n",
    "#Result\n",
    "print \"numerical aperture is\",round(NA,3)\n",
    "print \"acceptance angle is\",round(theta,3),\"degrees\"\n",
    "print \"answer for angle given in the book varies due to rounding off errors\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 11, Page number 13.21"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "core radius is 1.548 micro m\n",
      "answer given in the book is wrong\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "n2=1.465;             #refractive index of cladding\n",
    "n1=1.480;             #refractive index of core\n",
    "lamda=850*10**-9;     #wavelength(m)\n",
    "\n",
    "#Calculation\n",
    "delta=(n1**2-n2**2)/(2*n1**2);         #relative refractive index difference\n",
    "a=2.405*lamda*10**6/(2*math.pi*n1*math.sqrt(2*delta));     #core radius(micro m)\n",
    "\n",
    "#Result\n",
    "print \"core radius is\",round(a,3),\"micro m\"\n",
    "print \"answer given in the book is wrong\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 12, Page number 13.21"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "total number of reflections per metre is 2321\n",
      "total distance travelled by light is 1.0067 m\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "n2=1.49;             #refractive index of cladding\n",
    "n1=1.5;              #refractive index of core\n",
    "a=25;                #core radius(micro m)\n",
    "\n",
    "#Calculation\n",
    "phic=math.asin(n2/n1);                  #angle(degrees)\n",
    "l=2*a*math.tan(phic);                   #fibre length covered in 1 reflection(micro m)\n",
    "n=10**6/l;                              #total number of reflections per metre\n",
    "d=1/math.sin(phic);                     #total distance travelled by light(m)\n",
    "\n",
    "#Result\n",
    "print \"total number of reflections per metre is\",int(n)\n",
    "print \"total distance travelled by light is\",round(d,4),\"m\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 13, Page number 13.22"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "total number of modes is 309\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "alpha=1.85;          #index profile\n",
    "a=25;                #core radius(micro m)\n",
    "NA=0.21;             #numerical aperture\n",
    "lamda=1.3;           #wavelength(micro m)\n",
    "\n",
    "#Calculation\n",
    "n=(alpha*2*math.pi**2*a**2*NA**2)/(lamda**2*(alpha+2));     #number of modes\n",
    "N=2*n;               #total number of modes\n",
    "\n",
    "#Result\n",
    "print \"total number of modes is\",int(N)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 14, Page number 13.22"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "signal attenuation per unit length is 1.7 dB km-1\n",
      "overall signal attenuation is 17 dB\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "L=10;        #transmission distance(km)\n",
    "Pi=100;      #optical power(micro W)\n",
    "Po=2;        #optical power output(micro W)\n",
    "\n",
    "#Calculation\n",
    "sa=round(10*math.log10(Pi/Po)/L,1);     #signal attenuation per unit length(dB km-1)\n",
    "osa=sa*L;                    #overall signal attenuation(dB)\n",
    "\n",
    "#Result\n",
    "print \"signal attenuation per unit length is\",sa,\"dB km-1\"\n",
    "print \"overall signal attenuation is\",int(osa),\"dB\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 15, Page number 13.23"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "dispersion is 1343.3 ns\n",
      "bandwidth length product is 7.44 *10**6 Hz-km\n",
      "answer for bandwidth given in the book is wrong\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "L=10;        #transmission distance(km)\n",
    "n1=1.55;     #refractive index of core\n",
    "delta=0.026;  #relative refractive index difference\n",
    "C=3*10**5;    \n",
    "\n",
    "#Calculation\n",
    "deltaT=L*n1*delta/C;    #dispersion(s)\n",
    "blp=L/deltaT;           #bandwidth length product(Hz-km)\n",
    "\n",
    "#Result\n",
    "print \"dispersion is\",round(deltaT*10**9,1),\"ns\"\n",
    "print \"bandwidth length product is\",round(blp/10**6,2),\"*10**6 Hz-km\"\n",
    "print \"answer for bandwidth given in the book is wrong\""
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}