summaryrefslogtreecommitdiff
path: root/Solid_State_Physics_Principles_And_Applications_by_R._Asokamani/chapter8.ipynb
blob: 228490a27a3ce35ee0aaaa3b58a6de7af8fb541b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
{
 "metadata": {
  "name": "",
  "signature": "sha256:e91aa877d853d74b42c0663ae5d9a2e258f4239791004d61b638bb70dcb448fc"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8: Specific Heat of Solids"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.1,Page number 241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "\n",
      "rho = 7.9*10**3;    # Density of iron, kg per cubic meter\n",
      "A = 56*10**-3;    # Atomic weight of iron, g/mol\n",
      "N_A = 6.02*10**23;    # Avogadro's number, atoms per mole\n",
      "mu_B = 9.3*10**-24;    # Bohr magneton;    # Ampere meter square\n",
      "n = rho*N_A/A;    # Total number of atoms per unit cell, per cubic meter\n",
      "M = 2.2*n*mu_B;    # Spontaneous magnetization of iron, Ampere per meter\n",
      "print\"Spontaneous magnetization of iron =\",\"{0:.3e}\".format(M),\"Ampere per meter\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Spontaneous magnetization of iron = 1.738e+06 Ampere per meter\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.2,Page number 241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "n = 3*10**28;    # Spin density of electrons in a ferromagnetic material, per cubic meter\n",
      "mu = 3*10**-23;    # spin magnetic moment of a ferromagnetic material, Square Ampere \n",
      "M_s = n*mu;    # Saturation magnetization of a ferromagnetic material, Per Ampere\n",
      "print\"Saturation magnetization of a ferromagnetic material =\",\"{0:.3e}\".format(M_s),\"ampere per meter\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Saturation magnetization of a ferromagnetic material = 9.000e+05 ampere per meter\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.3,Page number 241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "h_bar = 6.58*10**-16;     # Planck's constant, eV.s\n",
      "m = 0.511*10**6;       # Mass of an electron, eV\n",
      "e = 1.6*10**-12;       # Energy equivalent of 1 eV, erg/eV\n",
      "c = 3.0*10**10;       # Speed of light, cm/s\n",
      "N = 4.7*10**22;    # Free electron gas concentration of Lithium, per cubic cm\n",
      "mu_B = 9.27*10**-21;    # Bohr magneton, Ampere cm-square\n",
      "E_F = (h_bar*c)**2/(2*m)*(3*pi**2*N)**(2.0/3);    # Fermi energy, eV\n",
      "chi = 3*N*mu_B**2/(2*E_F*e);    # Magnetic susceptibility of Lithium, cgs units\n",
      "print\"Magnetic susceptibility of Lithium =\",\"{0:.3e}\".format(chi),\"cgs units\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Magnetic susceptibility of Lithium = 7.967e-07 cgs units\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.4,Page number 241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "a_B = 0.53*10**-8;    # Bohr radius, cm\n",
      "N = 27*10**23;    # Atomic density of He gas, per cubic cm\n",
      "c = 3*10**10;    # Speed of light, cm/sec\n",
      "e = 1.6*10**-19;    # Charge of an electron, Coulomb\n",
      "m = 9.1*10**-28;    # Mass of an electron, g\n",
      "# As r_classic = e**2/(m*c**2), Classical radius of an electron\n",
      "r_classic = 2.8*10**-13;   # Classical radius of the electron, cm \n",
      "chi = -2*N*r_classic/6*a_B**2;    # Magnetic susceptibility of Helium, cgs units\n",
      "\n",
      "print\"Diamagnetic susceptibility of helium atom in ground state =\",\"{0:.3e}\".format(chi),\"emu\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Diamagnetic susceptibility of helium atom in ground state = -7.079e-06 emu\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.5,Page number 242"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "chiA_He = 1.9*10**-6;    # Atomic susceptibility of helium, cm cube per mole\n",
      "chiA_Cu = 18*10**-6;    # Atomic susceptibility of Copper, cm cube per mole\n",
      "Q_sp = 1.77*10**7;    # Specific charge of an electron, emu\n",
      "Ne = 9650.0;    # Charge of a gram ion, emu\n",
      "Z_He = 2.0;    # Atomic number of helium atom\n",
      "Z_Cu = 29.0;    # Atomic number of copper atom\n",
      "R_He = sqrt(abs(-6*chiA_He/(Ne*Z_He*Q_sp)));    # Magnetic susceptibility of helium atom, cgs units\n",
      "R_Cu = sqrt(abs(-6*chiA_Cu/(Ne*Z_Cu*Q_sp)));    # Magnetic susceptibility of copper atom, cgs units\n",
      "print\"Atomic radius of helium =\",\"{0:.3e}\".format(R_He),\"cm\";\n",
      "print\"Atomic radius of copper =\",\"{0:.3e}\".format(R_Cu),\"cm\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Atomic radius of helium = 5.777e-09 cm\n",
        "Atomic radius of copper = 4.669e-09 cm\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.6,Page number 242"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "N = 6.039*10**22;    # Atomic density of Neon gas, per cubic cm \n",
      "# As r_classic = e**2/(m*c**2), Classical radius of an electron\n",
      "r_classic = 2.8*10**-13;   # Classical radius of the electron, cm\n",
      "Z = 10.0;    # Atomic number of helium atom\n",
      "a0 = 0.53*10**-8;      # Bohr's radius, cm\n",
      "n1 = 2; n2 = 2; n3 = 6;     # Occupation numbers for 1s, 2s and 2p states of Ne\n",
      "r_sq_1s = 0.031;    # Expectation value for 1s state\n",
      "r_sq_2s = 0.905;    # Expectation value for 2s state\n",
      "r_sq_2p = 1.126;    # Expectation value for 2p state \n",
      "mean_r_sq = n1*r_sq_1s + n2*r_sq_2s + n3*r_sq_2p;   # Mean square radius, cm-square\n",
      "Chi_A = -1.0/6*N*Z*r_classic*mean_r_sq*a0**2;    # Magnetic susceptibility of helium atom, cgs units\n",
      "print\"Atomic susceptibility of Ne atom =\",\"{0:.3e}\".format(Chi_A),\"emu/mole\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Atomic susceptibility of Ne atom = -6.830e-06 emu/mole\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.7,Page number 249"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, J/eV\n",
      "h = 6.626*10**-34; # Planck's constant, Js\n",
      "h_cross = h/(2*pi);    # Reduced Planck's constant, Js\n",
      "m = 9.1*10**-31;   # Mass of an electron, kg\n",
      "mu = e*h_cross/(2*m);    # Bohr magneton, J/T\n",
      "mu_H = mu/e;    # Magnetic energy, eV\n",
      "kT = 0.025;    # Energy associated with two degrees of freedom, eV\n",
      "E_ratio = mu_H/kT;  # Exceptional terms in Langevin's function\n",
      "print\"The magnitude of mu*H/(k*T) =\",\"{0:.3e}\".format(E_ratio);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The magnitude of mu*H/(k*T) = 2.318e-03\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.8,Page number 249"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "mu = 5.78*10**-5;    # Bohr magneton, eV/T\n",
      "NE_F = 0.826;    # Density of states at fermi level, electrons/atom-J\n",
      "chi_Pauli = mu**2*NE_F/10**-4;    # Pauli diamagnetism, cgs units\n",
      "chi_Core = -4.2*10**-6;    # Core diamagnetism, cgs units\n",
      "chi_Landau = -1.0/3*chi_Pauli;    # Landau diamagnetism, cgs units\n",
      "chi_Total = chi_Core+ chi_Pauli+chi_Landau;    # Paramagnetic susceptibility of Mg, cgs units\n",
      "\n",
      "print\"The paramagnetic susceptibility of Mg  =\",\"{0:.3e}\".format(chi_Total),\"cgs units\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The paramagnetic susceptibility of Mg  = 1.420e-05 cgs units\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.9,Page number 250"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, J/eV\n",
      "mu = 9.29*10**-24;    # Bohr magneton, J/T\n",
      "mu_0 = 1.26*10**-6;    # Permeability of free space, Sq. tesla cubic meter per joule\n",
      "E_F= 11.63*e;    # Fermi energy, J\n",
      "N = 6.02*10**28;    # Atomic concentration, atoms per cubic meter \n",
      "chi_Total = 2.2*10**-5;   # Paramagnetic susceptibility of Mg, S.I. units\n",
      "chi_Pauli = 3*N*mu**2*mu_0/(2*E_F);    # Pauli diamagnetism, S.I. units\n",
      "chi_dia = chi_Total - chi_Pauli;    # Diamagnetic contribution to magnetic susceptibility\n",
      "\n",
      "print\"The Pauli spin susceptibility of Al =\",\"{0:.3e}\".format(chi_Pauli),\"S.I. units\";\n",
      "print\"The diamagnetic contribution to magnetic susceptibility of Al =\",\"{0:.3e}\".format(chi_dia),\"S.I. units\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Pauli spin susceptibility of Al = 5.277e-06 S.I. units\n",
        "The diamagnetic contribution to magnetic susceptibility of Al = 1.672e-05 S.I. units\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.10,Page number 250"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "a0 = 5.3;    # Bohr radius, nm\n",
      "rs_a0_ratio = 3.93;     # Ratio of solid radius to the lattice parameter \n",
      "chi_Pauli = 2.59/rs_a0_ratio;    # Pauli's spin susceptibility, cgs units\n",
      "\n",
      "print\"The Pauli spin susceptibility for Na in terms of free electron gas parameter =\",round(chi_Pauli,3);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Pauli spin susceptibility for Na in terms of free electron gas parameter = 0.659\n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.11,Page number 264"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "S = 2;  # Spin quantum number\n",
      "J = 0;  # Total quantum number\n",
      "L = 2;  # Orbital quantum number\n",
      "g = 2;  # Lande splitting factor\n",
      "print\"The spectroscopic term value of Mn3+ ion =\",2*S+1,\"_D_\",J;\n",
      "# For J = L - S\n",
      "J = L - S;\n",
      "mu_N = g*sqrt(J*(J+1)); # Effective magneton number\n",
      "print\"The effective magneton number for J = L - S is\",mu_N;\n",
      "# For J = S, L = 0 so that\n",
      "L = 0;\n",
      "J = L+S;\n",
      "mu_N = g*sqrt(J*(J+1)); # Effective magneton number\n",
      "print\"The effective magneton number for J = S is\",round(mu_N,2),\"\\nIt is in agreement with the experimental value of 5.0.\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The spectroscopic term value of Mn3+ ion = 5 _D_ 0\n",
        "The effective magneton number for J = L - S is 0.0\n",
        "The effective magneton number for J = S is 4.9 \n",
        "It is in agreement with the experimental value of 5.0.\n"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.12,Page number 264"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "mu = 9.27*10**-24; # Bohr's magneton, J/T\n",
      "N_up = 5;   # Number of electrons with spin up as per Hunds Rule\n",
      "N_down = 1; # Number of electrons with spin down as per Hunds Rule\n",
      "M = mu*(N_up-N_down);     # Net magnetic moment associated with six electrons in the 3d shell, J/T\n",
      " \n",
      "print\"The magnetic moment of 3d electrons of Fe using Hunds rule =\",M/mu,\"Bohr magnetons\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The magnetic moment of 3d electrons of Fe using Hunds rule = 4.0 Bohr magnetons\n"
       ]
      }
     ],
     "prompt_number": 31
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.13,Page number 264"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "C = [[1,2,3,4],[5,6,7,8],[9,10,11,12]];\n",
      "# Enter compound names\n",
      "C[0][0] = 'LaCrO3';\n",
      "C[1][0] = 'LaMnO3';\n",
      "C[2][0] = 'LaCoO3';\n",
      "# Enter Magnetic moments from Hunds rule\n",
      "C[0][1] = 3.0;\n",
      "C[1][1] = 4.0;\n",
      "C[2][1] = 5.0;\n",
      "# Enter Magnetic moments from Band theory\n",
      "C[0][2] = 2.82;\n",
      "C[1][2] = 3.74;\n",
      "C[2][2] = 4.16;\n",
      "# Enter Magnetic moments from the Experiment\n",
      "C[0][3] = 2.80;\n",
      "C[1][3] = 3.90;\n",
      "C[2][3] = 4.60;\n",
      "print\"__________________________________________________\";\n",
      "print\"Compound  Magnetic moment per formula unit (in BM)  \";\n",
      "print\"          ________________________________________\";\n",
      "print\"          Hunds Rule   Band Theory    Experiment\";\n",
      "print\"__________________________________________________\";\n",
      "for i in range (0,3) :\n",
      "    print\"\",C[i][0],\"    \",C[i][1],\"       \",C[i][2],\"          \",C[i][3]\n",
      "print\"__________________________________________________\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "__________________________________________________\n",
        "Compound  Magnetic moment per formula unit (in BM)  \n",
        "          ________________________________________\n",
        "          Hunds Rule   Band Theory    Experiment\n",
        "__________________________________________________\n",
        " LaCrO3      3.0         2.82            2.8\n",
        " LaMnO3      4.0         3.74            3.9\n",
        " LaCoO3      5.0         4.16            4.6\n",
        "__________________________________________________\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.14,Page number 268"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "C = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]];\n",
      "# Enter compound names\n",
      "C[0][0] = 'LaTiO3';\n",
      "C[1][0] = 'LaCrO3';\n",
      "C[2][0] = 'LaFeO3';\n",
      "C[3][0] = 'LaCoO3';\n",
      "# Enter total energy difference w.r.t. ground state for Paramagnetics, mRyd\n",
      "C[0][1] = 0.014;\n",
      "C[1][1] = 158.3;\n",
      "C[2][1] = 20.69;\n",
      "C[3][1] = 0.000;\n",
      "# Enter total energy difference w.r.t. ground state for Ferromagnetics, mRyd\n",
      "C[0][2] = 0.034;\n",
      "C[1][2] = 13.99;\n",
      "C[2][2] = 0.006;\n",
      "C[3][2] = 0.010;\n",
      "# Enter total energy difference w.r.t. ground state for Antiferromagnetics, mRyd\n",
      "C[0][3] = 0.000;\n",
      "C[1][3] = 0.000;\n",
      "C[2][3] = 0.000;\n",
      "C[3][3] = 0.003;\n",
      "print\"______________________________________________________________\";\n",
      "print\"Solid     Total energy difference (mRyd) (w.r.t. ground state)\";\n",
      "print\"          ____________________________________________________\";\n",
      "print\"            Paramagnetic    Ferromagnetic   Antiferromagnetic \";\n",
      "print\"______________________________________________________________\";\n",
      "for i in range (0,4) :\n",
      "    print\"\",C[i][0],\"      \",C[i][1],\"         \",C[i][2],\"          \",C[i][3]\n",
      "print\"______________________________________________________________\";\n",
      "print\"All the solids given above crystallize in the antiferromagnetic state except that of LaCoO3.\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "______________________________________________________________\n",
        "Solid     Total energy difference (mRyd) (w.r.t. ground state)\n",
        "          ____________________________________________________\n",
        "            Paramagnetic    Ferromagnetic   Antiferromagnetic \n",
        "______________________________________________________________\n",
        " LaTiO3        0.014           0.034            0.0\n",
        " LaCrO3        158.3           13.99            0.0\n",
        " LaFeO3        20.69           0.006            0.0\n",
        " LaCoO3        0.0           0.01            0.003\n",
        "______________________________________________________________\n",
        "All the solids given above crystallize in the antiferromagnetic state except that of LaCoO3.\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}