summaryrefslogtreecommitdiff
path: root/Solid_State_Physics_Principles_And_Applications_by_R._Asokamani/chapter6.ipynb
blob: 634521ef860c83f1f9835fc337b830150e9f4c40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
{
 "metadata": {
  "name": "",
  "signature": "sha256:a712c503532bf01630566d0248f8b9fe4ae07a136310d2bc72cf3a40e429d9f4"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 6: Semiconductor Physics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.1,Page number 190"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "S = [[1,2],[3,4],[5,6],[7,8]];      # Declare a 4X2 matrix\n",
      "# Enter material names\n",
      "S[0][0] = 'Si'; S[1][0] = 'GaAs'; S[2][0] = 'GaP'; S[3][0] = 'ZnS';\n",
      "# Enter energy band gap values\n",
      "S[0][1] = 1.11; S[1][1] = 1.42; S[2][1] = 2.26; S[3][1] = 3.60;\n",
      "h = 6.626*10**-34;   # Planck's constant, Js\n",
      "c = 3*10**8;         # Speed of light, m/s\n",
      "e = 1.6*10**-19;     # Energy equivalent of 1 eV, J/eV\n",
      "print\"______________________________________________________\";\n",
      "print\"Material      E_g (eV)    Critical Wavelength (micron)\";\n",
      "print\"______________________________________________________\";\n",
      "for i in range (0,4) :\n",
      "    lamda = h*c/(S[i][1]*e);\n",
      "    print\"\", S[i][0],\"        \", S[i][1],\"           \",round(lamda/10**-6,3);\n",
      "\n",
      "print\"______________________________________________________\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "______________________________________________________\n",
        "Material      E_g (eV)    Critical Wavelength (micron)\n",
        "______________________________________________________\n",
        " Si          1.11             1.119\n",
        " GaAs          1.42             0.875\n",
        " GaP          2.26             0.55\n",
        " ZnS          3.6             0.345\n",
        "______________________________________________________\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.2,Page number 192"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "c = 3*10**8;      # Speed of light, m/s\n",
      "h = 6.626*10**-34;     # Planck's constant, Js\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, J/eV\n",
      "omega = 2e+014;      # Wave vector involved in phonon energy, rad per sec\n",
      "f = omega/(2*pi);   # Frequency of the wave, Hz \n",
      "E = h*f/e;        # Phonon energy involved in Si to lift the electron, eV\n",
      "print\"The phonon energy involved in Si =\",round(E,4),\"eV which is insufficient to lift an electron.\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The phonon energy involved in Si = 0.1318 eV which is insufficient to lift an electron.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.3,Page number 192"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "N_A = 6.023*10**23;   # Avogadro's number\n",
      "# For Si\n",
      "A = 28.1;   # Atomic weight of Si, g/mol\n",
      "a = 5.43*10**-8;   # Lattice constant for Si, cm\n",
      "n = 8.0/a**3;  # Number of atoms per unit volume, atoms/cc\n",
      "rho = n*A/N_A;  # Density of Si, g/cc\n",
      "print\"The density of Si =\",round(rho,3),\"atoms per cc\";\n",
      "# For GaAs\n",
      "A = 69.7+74.9;   # Atomic weight of GaAs, g/mol\n",
      "a = 5.65*10**-8;   # Lattice constant for Si, cm\n",
      "n = 4.0/a**3;  # Number of atoms per unit volume, atoms/cc\n",
      "rho = n*A/N_A;  # Density of GaAs, g/cc\n",
      "print\"The density of GaAs =\",round(rho,3),\"toms per cc\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The density of Si = 2.331 atoms per cc\n",
        "The density of GaAs = 5.324 toms per cc\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.4,Page number 196"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "m = 9.11*10**-31;  # Electron Rest Mass , kg\n",
      "k = 1.38*10**-23;  # Boltzmann constant, J/mol/K\n",
      "h = 6.626*10**-34; # Planck's constant, Js\n",
      "T = 300.0;        # Room temperature, K\n",
      "m_e = 0.068*m;    # Mass of electron, kg\n",
      "m_h = 0.56*m;   # Mass of hole, kg\n",
      "E_g = 1.42*1.6*10**-19;     # Energy band gap for GaAs, J\n",
      "n_i = 2*(2*pi*k*T/h**2)**(3.0/2)*(m_e*m_h)**(3.0/4)*exp(-E_g/(2*k*T));\n",
      "print\"The Intrinsic carrier concentration of GaAs at 300 K =\",\"{0:.3e}\".format(n_i),\"per metre cube\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Intrinsic carrier concentration of GaAs at 300 K = 2.618e+12 per metre cube\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.5,Page number 197"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "m = 9.11*10**-31;  # Electron Rest Mass , kg\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, J/eV\n",
      "k = 1.38*10**-23;  # Boltzmann constant, J/mol/K\n",
      "T = 300.0;        # Room temperature, K\n",
      "m_e = 1.1*m;    # Mass of electron, kg\n",
      "m_h = 0.56*m;   # Mass of hole, kg\n",
      "E_g = 1.1;     # Energy band gap for GaAs, J\n",
      "E_F = E_g/2+3.0/4*k*T/e*log(m_h/m_e);   # Position of Fermi level of Si at room temperature, eV\n",
      "print\"The position of Fermi level of Si at room temperature =\",round(E_F,3),\"eV\";\n",
      "print\"The fermi level in this case is shifted downward from the midpoint (0.55 eV) in the forbiddem gap.\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The position of Fermi level of Si at room temperature = 0.537 eV\n",
        "The fermi level in this case is shifted downward from the midpoint (0.55 eV) in the forbiddem gap.\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.6,Page number 197"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "e = 1.6*10**-19;   # Electronic charge, C\n",
      "n_i = 2.15*10**13;    # Carrier density of Ge at room temperature, per cc\n",
      "mu_e = 3900.0;    # Mobility of electron, cm-square/V-s\n",
      "mu_h = 1900.0;    # Mobility of hole, cm-square/V-s\n",
      "sigma_i = e*(mu_e+mu_h)*n_i;    # Intrinsic conductivity of Ge, mho per m\n",
      "rho_i = 1.0/sigma_i;  # Intrinsic resistivity of Ge at room temperature, ohm-m\n",
      "print\"The intrinsic resistivity of Ge at room temperature =\",round(rho_i,2),\"ohm-cm\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The intrinsic resistivity of Ge at room temperature = 50.12 ohm-cm\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.7,Page number 197"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "m = 9.1*10**-31;   # Mass of an electron, kg\n",
      "e = 1.6*10**-19;   # Electronic charge, C\n",
      "k = 1.38*10**-23;  # Boltzmann constant, J/mol/K\n",
      "T = 30.0;    # Given temperature, K\n",
      "n = 10**22;    # Carrier density of CdS, per metre cube\n",
      "mu = 10**-2;     # Mobility of electron, metre-square/V-s\n",
      "sigma = e*mu*n;    # Conductivity of CdS, mho per m\n",
      "print\"The conductivity of CdS sample =\",round(sigma,2),\"mho per m\";\n",
      "m_eff = 0.1*m;  # Effective mass of the charge carries, kg\n",
      "t = m_eff*sigma/(n*e**2);  # Average time between successive collisions, s\n",
      "print\"The average time between successive collisions =\",\"{0:.3e}\".format(t),\"sec\";\n",
      "# We have 1/2*m_eff*v**2 = 3/2*k*T, solving for v\n",
      "v = sqrt(3*k*T/m_eff);    # Velocity of charrge carriers, m/s\n",
      "l = v*t;    # Mean free distance travelled by the carrier, m\n",
      "print\"The mean free distance travelled by the carrier =\",\"{0:.3e}\".format(l),\"m\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The conductivity of CdS sample = 16.0 mho per m\n",
        "The average time between successive collisions = 5.688e-15 sec\n",
        "The mean free distance travelled by the carrier = 6.644e-10 m\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.8,Page number 199"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "k = 1.38*10**-23;  # Boltzmann constant, J/mol/K\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, J/eV\n",
      "T = [385.0, 455.0, 556.0, 714.0];      # Temperatures of Ge, K\n",
      "rho = [0.028, 0.0061, 0.0013, 0.000274];   # Electrical resistivity, ohm-m\n",
      "Tinv = [0.0, 0.0, 0.0, 0.0];    # Create an empty row matrix for 1/T\n",
      "ln_sigma = [0.0, 0.0, 0.0, 0.0];  # Create the empty row matrix for log(sigma)\n",
      "for i in xrange(len(T)):\n",
      "    Tinv[i] = 1/T[i];\n",
      "    ln_sigma[i] = log(1.0/rho[i]);\n",
      "# Plot the graph\n",
      "plot(Tinv, ln_sigma);\n",
      "axis([0,0.003,0,9])\n",
      "title('Plot of ln (sigma) vs 1/T');\n",
      "xlabel('1/T');\n",
      "ylabel('ln (sigma)');\n",
      "show();\n",
      "\n",
      "\n",
      "# Calculate slope\n",
      "slope = (ln_sigma[2]-ln_sigma[1])/(Tinv[2]-Tinv[1]);\n",
      "E_g = abs(2*slope*k);        # Energy gap of Ge, J\n",
      "print\"The energy gap of Ge =\",E_g/e,\"eV\";\n",
      "\n",
      "# Result \n",
      "# The energy gap of Ge = 0.658 eV "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX6B/DPMOwKSGrIoqK4sAkMFWiJjru5W2qCGmlq\nZfv1qvcnlmQaVprXJStvZkqgXsMraUouNUYm4ZZxNfMakApiSrKJsp7fH6dGj+zLmTMzfN6vl69g\nZs55nq/HeDjf7agEQRBARET0JwulEyAiIuPCwkBERBIsDEREJMHCQEREEiwMREQkwcJAREQSLAxU\nK61Wi40bNxok1gcffAAXFxc4Ojrixo0bkvcyMzNhYWGBysrKRp27pKQEfn5+uHr1aq2fS05Ohre3\nd6NiNEVJSQl8fHxw/fp1g8cmuhcLA8HT0xP29vZwcHBAhw4dMH36dNy8eRMAoFKpoFKp6jxHU39w\nl5WVYe7cuTh06BAKCgrg7OzcqPPUZMOGDejfvz9cXFxq/VxYWBjOnTvXrLHrw8bGBjNmzMDy5ctl\njzV79mx4e3tDrVZj8+bN1X5m2LBh8PLygoODAxwcHGBjYwNra2v99yNHjpQ9T1IOCwNBpVJhz549\nKCwsxMmTJ3H8+HEsXbq0Uedq7HrJnJwc3L59Gz4+Po06vi4fffQRpk2bJsu5m0t4eDg2b96MsrIy\nWeMEBQVh/fr1CA4Orrbo37x5EydOnMC5c+dQWFiIwsJCLFy4EJMnT9Z//+WXX8qaIymLhYEk3Nzc\nMHz4cJw5c6bKe4IgYOnSpfD09ISLiwsiIyNRUFAAAOjXrx8AoE2bNnBwcMAPP/xQ5fiSkhK88sor\ncHd3h7u7O1599VWUlpbi/Pnz+oLQpk0bDB48uM48tVotXn/9dfTt2xeOjo4YNmwYcnNzq/3sxYsX\nkZ6ejtDQUP1re/fuhZ+fHxwdHeHh4YGVK1cCAHQ6HTp27Kj/3MmTJ6HRaODo6IhJkybhiSeewGuv\nvab/rIeHB9599124uLjAzc0NiYmJ2Lt3L3r27Im2bdsiJiZGf67U1FT06dMHzs7OcHNzw4svvigp\nAh4eHnB2dsbRo0ertCE7Oxv29vaSLrZTp06hffv2qKiowIULF9C/f3+0adMG7du3x+TJk2v8u5sz\nZw4GDhwIW1vbat8/dOgQ+vbtCysrK/1rgiA0uuiT6WFhIAB3ftO/dOkS9u3bB41GU+UzmzZtwubN\nm6HT6ZCeno6ioiK88MILAMS+eQDIz89HYWGh5IfwX5YtW4bU1FScPn0ap0+fRmpqKpYuXYoePXro\nC1F+fj4OHjxYr5y3bt2KTz/9FL///jtKS0uxYsWKaj+XlpaGrl27wsLizj/3p59+Ghs2bEBBQQHO\nnDmDgQMHVjmutLQU48ePx4wZM3Djxg2Eh4dj165dkt+yr169ipKSEmRnZ2PJkiWYOXMm4uPjcfLk\nSSQnJ+PNN9/Eb7/9BgCwtLTE6tWrkZubi6NHj+LQoUNYv369JKaPjw9Onz5dJRc3Nzf06dMHCQkJ\n+tfi4+MxceJEqNVqvPbaaxg+fDjy8vKQlZWFl156qV5/h9XZu3cvu4paOBYGgiAIGDduHJydnREW\nFgatVouFCxdW+VxcXBzmzp0LT09PtGrVCjExMdi2bRsqKyvr9dtkfHw8Xn/9dbRr1w7t2rXD4sWL\nERsbq8+hIVQqFaZPn45u3brB1tYWkyZNwo8//ljtZ/Py8uDg4CB5zdraGmfOnEFBQQGcnJyqLYQp\nKSmoqKjAiy++CLVajfHjxyMkJETyGSsrK0RFRUGtVuOJJ55Abm4uXn75ZbRq1Qq+vr7w9fXV5xUc\nHIyQkBBYWFigc+fOmD17Ng4fPiw5n4ODA/Ly8qptR0REBLZu3QpA/Pvavn07IiIi9O3JzMxEVlYW\nrK2t8fDDD9fjb7F6+/btw4gRIxp9PJk+FgaCSqVCYmIibty4gczMTKxbtw42NjZVPnflyhV07txZ\n/32nTp1QXl5e50yfv2RnZ1c5Pjs7u9F5d+jQQf+1nZ0dioqKqv2cs7MzCgsLJa8lJCRg79698PT0\nhFarRUpKSrX5uru7S167u5sJANq2bau/g7CzswMAyQC3nZ2dfiD//PnzGDVqFFxdXeHk5ISoqKgq\n3V+FhYU1Drw/9thjOHr0KHJycvDtt9/CwsICffv2BQC88847EAQBISEh8Pf3x6ZNm6o9R13S0tLg\n5ORUpd3UsrAwUL25ubkhMzNT//3FixdhaWkJFxeXes1cqu54Nzc3GTKVCggIQEZGhmTG1IMPPohd\nu3bh2rVrGDduHCZNmlTlOFdXV2RlZUleu3jxYqPzeO655+Dr64sLFy4gPz8fy5YtqzKL6+eff0Zg\nYGC1xzs7O2Po0KHYvn074uPjER4ern/PxcUFGzZsQFZWFj766CPMmTMH6enpDc6xpm6k+lxfMh8s\nDFRv4eHhWLVqFTIzM1FUVKSfqWJhYYH27dvDwsICv/76a63HL126FNevX8f169exZMmSJs0Uqm/3\nk4eHB7p166YfEC8rK0NcXBzy8/OhVqvh4OAAtVpd5bg+ffpArVZj3bp1KC8vR2JiIo4dO9bofIuK\niuDg4AB7e3ucO3cOH3zwgeT9rKws/PHHH+jdu3eN54iIiMDmzZuRkJCg70YCgB07duDy5csAxAF8\nlUolGVO5W1lZGW7fvo3KykqUlpbi9u3b+r/Lffv2VVsYOPDcsrAwUL3NmDED06ZNQ79+/dC1a1fY\n29tj7dq1AAB7e3tERUXhkUcegbOzM1JTU6scv2jRIjz44IMICAhAQEAAHnzwQSxatEj/fl2/ld77\n/t3f17Xe4plnntGPZwDAZ599hi5dusDJyQkbNmxAXFxclfNaW1tj586d2LhxI5ydnREXF4dRo0bB\n2tq6Xjnda8WKFYiPj4ejoyNmz56NyZMnSz4fHx+Pp556SjIb6F5jxozBhQsX4Orqil69eulfP378\nOHr37g0HBweMHTsWa9asgaenZ7XnGDJkCOzt7ZGSkoLZs2fD3t4eycnJyMvLw9mzZ6sdn6jvehYy\nDyo5H9SzevVqfPzxxxAEAbNmzcLLL78sVyiiWpWWlkKj0eDrr7+uc5FbbUJDQzFnzhxERkY2Y3bi\nVN6goCAkJyejXbt2zXru+vr3v/+NnTt3Ytu2bYrEJ+MhW2H473//i/DwcBw7dgxWVlYYPnw4Pvzw\nQ3h5eckRjkgW3377LXr06IF27dohLi5O33fflOJirA4cOABHR8dqpxpTyyJbV9K5c+cQGhoKW1tb\nqNVq9O/fHzt37pQrHJEsfvnlFwQFBcHZ2RmrVq3C559/bpZFARC7mFgUCJDxjuHcuXMYO3Ysjh49\nCltbWwwaNAghISFYvXq1HOGIiKiZWMp1Ym9vbyxYsABDhw5Fq1atoNFoapwlQURExkPWwee7LVy4\nEJ06dcKzzz57JzhnORARNYqcP7pl/RX+999/ByAuCvrPf/4jmXf9l7825zLHP4sXL1Y8B7aP7WuJ\n7TPntgmC/L/Ly9aVBAATJkxAbm4urKyssH79ejg6OsoZjoiImoGsheHbb7+V8/RERCQDjgbLSKvV\nKp2CrNg+02bO7TPnthmCwQafqw2uUhmkv4yIyJzI/bOTdwxERCTBwkBERBIsDEREJMHCQEREEiwM\nREQkwcJAREQSLAxERCTBwkBERBIsDEREJMHCQEREEiwMREQkwcJAREQSLAzUYmRnA5WVSmdBZPy4\nuyq1GFOnAiUlwJYtgJ2d0tkQNZ5J7666atUq+Pv7o1evXoiIiEBJSYmc4Yhq9fHHgKUlMHgwcP26\n0tkQGS/ZCkNWVhbWrl2LEydOIC0tDRUVFdi2bZtc4YjqZGsLxMUB/fsDffoA//uf0hkRGSdZH+1Z\nXl6O4uJiqNVqFBcXw93dXc5wRHWysADeegvo0gUICwMSEoBHHlE6KyLjItsdg7u7O+bOnYtOnTrB\nzc0Nbdq0weDBg+UKR9Qgs2YBn34KjB8P7NihdDZExkW2O4YbN27giy++QGZmJpycnDBx4kTExcVh\nypQpks9FR0frv9ZqtXxWKxnM8OHAgQPAqFFAZibw978DKpXSWRFVpdPpoNPpDBZPtllJO3bswFdf\nfYWPP/4YABAbG4uUlBS8//77d4JzVhIZgcuXgZEjgYcfBtauFQeoiYyZyc5K6ty5M1JSUnDr1i0I\ngoCDBw/C19dXrnBEjebhASQnA+npwNixQFGR0hkRKUu2whASEoIJEyYgODgYAQEBAIDZs2fLFY6o\nSRwdgT17AFdXoF8/cTEcUUvFBW5EdxEEICYG2LBBLBT+/kpnRFSV3D87WRiIqhEfD7zyCrB1KzBo\nkNLZEEmZ7BgDkSmLiBCnsUZEiNNaiVoS3jEQ1eLcOWDECGDaNCA6mtNZyTiwK4lIYVevAmPGAD17\nivstWVsrnRG1dOxKIlKYiwvwzTdAQYG4KC4vT+mMiOTFwkBUD/b24r5KAQHi3kq//aZ0RkTyYWEg\nqie1GvjnP4HZs8VV0sePK50RkTw4xkDUCLt2iQXik0/EvZaIDIljDERGaNw4cQHc7NnA+vVKZ0PU\nvHjHQNQE6enidNZRo4B33hGf90AkN05XJTJyf/whPtehfXsgNpbPkyb5sSuJyMjddx+wfz9gYyNu\nn3HtmtIZETUNCwNRM7CxAT77DBg4UHye9PnzSmdE1Hh8JAlRM1GpgKVLAU9PcetuPk+aTBXvGIia\n2cyZwJYt4rjD9u1KZ0PUcBx8JpLJ6dPA6NHA888D8+dzAz5qPiY9+PzLL79Ao9Ho/zg5OWHNmjVy\nhiQyGoGBwNGj4jMd5swBysuVzoiofgx2x1BZWQl3d3ekpqaiY8eOYnDeMVALUFAATJokrnHYvh1w\ncFA6IzJ1Jn3HcLeDBw/Cy8tLXxSIWgpHR2D3bsDDA+jfn8+TJuNnsMKwbds2REREGCockVGxsgI+\n+ki8c+jTB0hLUzojopoZZLpqaWkpdu/ejbfffrvKe9HR0fqvtVottFqtIVIiMjiVCvjHP4DOncWF\ncPHxwODBSmdFpkCn00Gn0xksnkHGGBITE/HBBx8gKSlJGpxjDNRCJScDEycCMTHA9OlKZ0OmRu6f\nnQa5Y9i6dSvCw8MNEYrIJISFAYcPixvwZWQAb7zB6axkPGS/Y7h58yY6d+6MjIwMONwzHYN3DNTS\n/f67+DzpHj34PGmqP+6uSmTmiouBqVOBGzeAnTsBZ2elMyJjZzbTVYmoevb2wI4dgEYj7q2Umal0\nRtTSsTAQGQG1GnjvPeC558TiwOdJk5LYlURkZBITgVmzgI0bxb2WiO5lFrOSiKj+xo4F3NzE//72\nG/DCC0pnRC0N7xiIjFRGBjByJDBsGLBihdjdRARwVhJRi5aXBzz+ONC6tbhSulUrpTMiY8BZSUQt\nWJs2wL59QNu24gZ8V64onRG1BCwMREbO2lociH7sMaB3b27AR/JjVxKRCdm6FXj5ZSA2Vhx7oJaJ\nXUlEpBceLq6OjowENmxQOhsyV7xjIDJBFy6IG/CNGwcsXy4+HY5aDs5KIqJq5eYC48cD998vdi3Z\n2SmdERkKu5KIqFpt2wIHDgC2tsCAAcDVq0pnROaChYHIhNnYiHcLw4eLjww9e1bpjMgcsCuJyExs\n2QLMmyfOXBo4UOlsSE7sSiKiennySWD7dnHm0qZNSmdDpkzWwpCXl4cJEybAx8cHvr6+SElJkTMc\nUYun1YqPDF26FFi0COANOTWGrF1JkZGR6N+/P2bMmIHy8nLcvHkTTk5Od4KzK4lIFteuibuzenoC\nn3wiDlCT+TDZ6ar5+fnQaDRIT0+vOTgLA5Fsbt0SF8JlZwO7dgHt2imdETUXkx1jyMjIQPv27TF9\n+nQEBwdj1qxZKC4uliscEd3Dzg7Ytg3o10+csXT+vNIZkamQ7UE95eXlOHnyJNatW4eHHnoIr7zy\nCpYvX44lS5ZIPhcdHa3/WqvVQqvVypUSUYtjYQG89RbQtatYIHbsAMLClM6KGkqn00Gn0xksnmxd\nSTk5OejTpw8yMjIAAN999x2WL1+OPXv23AnOriQigzlwAJgyBVi1SvwvmS6T7Urq0KEDOnbsiPN/\n3r8ePHgQfn5+coUjojoMGQJ88w0QFQUsWcIZS1QzWWclnT59GjNnzkRpaSm8vLywadMmzkoiUlhO\nDjB6NODrC/zrX+LzHsi0mOyspHoFZ2EgUsTNm8DUqeKjQ3fuBJydlc6IGsJku5KIyHi1agV8/jkQ\nHCzOWKplVjm1QCwMRC2UWg2sXAm89BLwyCPA998rnREZC3YlERH27hUXw73/PjBpktLZUF04xkBE\nBvHjj8CYMcCcOcCCBYBKpXRGVBMWBiIymKwsYNQo4IEHgA8+AKyslM6IqsPBZyIyGHd34NtvxSmt\nI0YA+flKZ0RKYGEgIgkHB3HTvZ49gYcfBn77TemMyNBYGIioCktLYO1aYPZssTgcO6Z0RmRIHGMg\nololJgIzZwIbNgDjxyudDQHy/+ysc3fVY8eOITk5GdnZ2bCzs0OvXr0wZMgQOHOpJFGLMHasOPYw\ndiyQkQG8+ipnLJm7GruSNm3ahODgYMTExOD27dvw9vaGi4sLkpOTMXjwYERGRuLixYuGzJWIFPLg\ng8DRo+KzpJ9/HigvVzojklONdwzFxcU4cuQI7Ozsqn3/1KlTOH/+PDp16iRbckRkPDp1Ar77TlwA\nN2YMsH27OFBN5odjDETUIGVl4l3DDz8AX34JeHgonVHLo/gCt1u3bmHjxo04c+YMbt++rU/qk08+\naXpwFgYikyQIwLvvijOXvvgC0GiUzqhlUXyB27Rp03D16lV89dVX0Gq1uHz5Mlq3bi1bQkRk/FQq\nYP588WlwQ4cCdz2YkcxAnXcMQUFB+PHHHxEQEICffvoJZWVl6Nu3L3744Yd6BfD09ISjoyPUajWs\nrKyQmpp6JzjvGIhMXkqKOI01Kgp44QWls2kZFJ+uav3n452cnJyQlpaGDh064Nq1a/UOoFKpoNPp\ncN999zU+SyIyWr17A0eOACNHAhcuiFt5q9VKZ0VNUWdX0qxZs/DHH39g6dKlGDNmDHx9fTF//vwG\nBeFdAZF569pVfJ7DTz8B48YBhYVKZ0RNIfuspK5du8LJyQlqtRrPPPMMZs2adSc4u5KIzEppqbht\n9/HjwO7dQMeOSmdknhTvSrpx4wa2bNmCzMxMlP+5qkWlUmHNmjX1CnDkyBG4urri2rVrGDJkCLy9\nvREWFta0rInIKFlbA//6F7BihdjFtGsX8NBDSmdFDVVnYRgxYgT69OmDgIAAqP5cB69qwHp4V1dX\nAED79u0xfvx4pKamSgpDdHS0/mutVgutVlvvcxOR8VGpgHnzgO7dxa27P/wQePxxpbMybTqdDjqd\nzmDx6uxKCg4OxsmTJxt18uLiYlRUVMDBwQE3b97E0KFDsXjxYgwdOlQMzq4kIrN28qS4Svr554F/\n/IN7LDUXxRe4vffee2jdujVGjx4NGxsb/ev1mWWUkZGB8X9ux1heXo4pU6bg//7v/+4EZ2EgMntZ\nWcDo0UBgIPDRR2J3EzWN4oXh/fffR1RUFJycnGBhYaFPKj09venBWRiIWoSiImDqVODGDWDnTqBt\nW6UzMm2KF4YuXbrg2LFjaNeuXfMHZ2EgajEqKsTupF27xD2WevRQOiPTpfiWGN27d69xh1UiovpS\nq8X9lRYsAMLCgG++UTojqkmds5Ls7e0RFBSEAQMG6McYGjJdlYjobjNnAl26AJMnAzExwIwZSmdE\n96qzMIwbNw7jxo2TvNaQ6apERPcaNAg4fBgYNQr45RexQFjwCfRGg89jICLF5OYCjz0G3Hcf8Nln\nQKtWSmdkGhQffO7Vq1eVJJycnPDQQw9h0aJFaNuE6QUsDERUUgI88wyQliY+28HdXemMjJ/ihWHe\nvHmwtLREREQEBEHAtm3bUFxcjA4dOuDIkSPYvXt344OzMBARxAf/LF8OrF8PJCYCwcFKZ2TcFC8M\nGo0Gp06dqva1Xr16IS0trfHBWRiI6C6ffw489xzw8cfA2LFKZ2O8FJ+uWlFRIXkoT2pqKiorKwEA\nlpZ1jl0TEdXbhAnA3r3iDq0rVoh3EmR4dd4xHDt2DNOnT0dRUREAwMHBARs3boSfnx++/PJLTJo0\nqfHBecdARNW4eFHcRiMkROxesrJSOiPjonhX0l/y8/MBiAPPzRachYGIalBYCISHA7duiV1Mzs5K\nZ2Q8FCsMsbGxmDZtGlauXClZtyAIAlQqFf72t781PTgLAxHVoqIC+PvfgX37gD17gG7dlM7IOCj2\noJ7i4mIAQGFhYbWFgYhIbmo1sGoV0LMn0Lcv8O9/A/36KZ2V+eMCNyIyCfv3izu0rlgBPPmk0tko\nS/FZSfPnz0dBQQHKysowaNAgtGvXDrGxsbIlRERUnaFDAZ0OeOMNICoK+HNyJMmgzsLw1VdfwdHR\nEXv27IGnpyd+/fVXvPvuu4bIjYhIwtcXSEkR91l64gngzx5vamZ1Foby8nIAwJ49ezBhwgQ4OTk1\naIyhoqICGo0Go0ePbnyWRER/at8eOHgQsLEBtFogJ0fpjMxPnYVh9OjR8Pb2xokTJzBo0CD8/vvv\nsLW1rXeA1atXw9fXlwPWRNRsbG2B2FhxrUNoKPDTT0pnZF7qNficm5sLJycnWFpa4ubNmygoKICr\nq2udJ798+TKeeuopREVF4b333quyrxIHn4moqbZtA156Cdi0CRg5UulsDEOxwefk5GT9123bttVv\nf9GqVSu4uroiPz+/zn2SXn31Vbz77rv6Z0UTETW3yZPFXVlnzQL++U9uo9EcalzHkJCQgPnz5+PR\nRx/FAw88gPbt2+PWrVu4cOECdDodMjMzsXLlyhpPvGfPHtx///3QaDTQ6XRy5E5EBADo3Rv4/vs7\nD/5Zs4bbaDRFrV1Jubm5SEhIwPfff48rV67Azs4OPj4+GDlyJPr27VvriRcuXIjY2FhYWlri9u3b\nKCgowOOPP44tW7bcCa5SYfHixfrvtVottFpt01tFRC1SQYE4W6miQlwM16aN0hk1D51OJ/kF+403\n3jCOvZKa4vDhw1ixYgXHGIhIduXlwKuvAocOidtodO2qdEbNT/EFbs2Fs5KIyBAsLYG1a8XnOjzy\nCHDkiNIZmR5uiUFEZmvfPiAyUtxvacoUpbNpPkaz7bYswVkYiEhm//2vOCgdGQlERwPm0HlhFIXh\nyJEjyMzM1K+CVqlUeLIZdrFiYSAiQ7h6VXxUaJcu4nqHBqzRNUqKF4apU6ciPT0dQUFBUKvV+tfX\nrl3b9OAsDERkILduAdOnA7/9BuzaBbi4KJ1R4yleGHx8fHD27FlZBo9ZGIjIkCorxe6k2Fhg927A\n31/pjBpH8VlJ/v7+uHLlimwJEBEZioUFsGQJ8OabwMCBQFKS0hkZpxpXPv/l2rVr8PX1RUhICGxs\nbACI1eqLL76QPTkiIjlMnQp4egITJwKLFgHPP690RsalzsIQHR1tgDSIiAyrb19xjcPatWIXE7d0\nu4PTVYmITIzcPztrvGNo3bp1jQPOKpUKBQUFsiVFRETK4R0DEZGJUXxWEhERtSwsDEREJMHCQERE\nEiwMREQkwcJAREQSLAxERCQha2G4ffs2QkNDERQUBH9/f66iJiIyAbKvYyguLoa9vT3Ky8vRt29f\nrF69GqGhoWJwrmMgImowk1/HYG9vDwAoLS1FWVkZLLghCRGRUZP9p3RlZSWCgoLg4uKCoUOH4qGH\nHpI7JBERNUGdu6s2lYWFBX788Ufk5+dj/PjxOHPmDPz8/PTv3z3uoNVqodVq5U6JiMik6HQ66HQ6\ng8Uz6F5Jb775Juzt7TF37lwxOMcYiIgazKTHGK5fv468vDwAwK1bt3DgwAH4+PjIGZKIiJpI1q6k\nK1euIDIyEhUVFaisrMQTTzyBESNGyBmSiIiaiNtuExGZGJPuSiIiItPDwkBERBIsDEREJMHCQERE\nEiwMREQkwcJAREQSLAxERCTBwkBERBIsDEREJMHCQEREEiwMREQkwcJAREQSLAxERCTBwkBERBIs\nDEREJMHCQEREErIWhkuXLmHAgAHw8/ODv78/1qxZI2c4IiJqBrI+wS0nJwc5OTkICgpCUVERHnjg\nAezatUv/3Gc+wY2IqOFM+gluHTp0QFBQEACgdevW8PHxQXZ2tpwhiYioiQw2xpCZmYlTp04hNDTU\nUCGJiKgRLA0RpKioCBMmTMDq1avRunVryXvR0dH6r7VaLbRarSFSIiIyGTqdDjqdzmDxZB1jAICy\nsjKMGjUKjz76KF555RVpcI4xEBE1mNw/O2UtDIIgIDIyEm3btsWqVauqBmdhICJqMJMuDN999x36\n9euHgIAAqFQqAEBMTAyGDx8uBmdhICJqMJMuDHUGZ2EgImowk56uSkREpoeFgYiIJFgYiIhIgoWB\niIgkWBiIiEiChYGIiCRYGIiISIKFgYiIJFgYiIhIgoWBiIgkWBiIiEiChYGIiCRYGIiISIKFgYiI\nJFgYiIhIgoWBiIgkZC0MM2bMgIuLC3r16iVnGCIiakayFobp06cjKSlJzhBERNTMZC0MYWFhcHZ2\nljMEERE1M44xEBGRhKXSCURHR+u/1mq10Gq1iuVCRGSMdDoddDqdweKpBEEQ5AyQmZmJ0aNHIy0t\nrWpwlQoyhyciMjty/+xkVxIREUnIWhjCw8Px8MMP4/z58+jYsSM2bdokZzgiImoGsncl1RqcXUlE\nRA3GriQiIjIoFgYiIpJgYSAiIgkWBiIikmBhICIiCRYGIiKSYGEgIiIJFgYiIpJgYSAiIgkWBiIi\nkmBhICIiCRYGIiKSYGEgIiIJFgYiIpJgYSAiIglZC0NSUhK8vb3RvXt3vP3223KGIiKiZiJbYaio\nqMALL7yApKQknD17Flu3bsXPP/8sVzijZMiHdyuB7TNt5tw+c26bIchWGFJTU9GtWzd4enrCysoK\nkydPRmJiolzhjJK5/+Nk+0ybObfPnNtmCLIVhqysLHTs2FH/vYeHB7KysuQKR0REzUS2wqBSqeQ6\nNRERyUjaKwk3AAAGb0lEQVQlyPRE6ZSUFERHRyMpKQkAEBMTAwsLCyxYsOBOcBYPIqJGkelHNwAZ\nC0N5eTl69uyJQ4cOwc3NDSEhIdi6dSt8fHzkCEdERM3EUrYTW1pi3bp1GDZsGCoqKvD000+zKBAR\nmQDZ7hiIiMg0NXnwuT6L2F566SV0794dgYGBOHXqVJ3H/vHHHxgyZAh69OiBoUOHIi8vT/9eTEwM\nunfvDm9vb+zfv7+p6dfKkG3LzMyEnZ0dNBoNNBoN5syZI2vbasvxbg1t344dO+Dn5we1Wo2TJ09K\nzmXIa1dbjndrrvaZy/WbN28efHx8EBgYiMceewz5+fn698zh+tXUPkNfPzna9tprryEwMBAajQbD\nhg3DlStX9O81+NoJTVBeXi54eXkJGRkZQmlpqRAYGCicPXtW8pkvv/xSePTRRwVBEISUlBQhNDS0\nzmPnzZsnvP3224IgCMLy5cuFBQsWCIIgCGfOnBECAwOF0tJSISMjQ/Dy8hIqKiqa0gSjaVtGRobg\n7+8vS1uqI1f7fv75Z+GXX34RtFqtcOLECf25DHntlGifuVy//fv366/LggULFPl/T4n2GfL6ydW2\ngoIC/fFr1qwRnn32WUEQGnftmnTHUJ9FbF988QUiIyMBAKGhocjLy0NOTk6tx959TGRkJHbt2gUA\nSExMRHh4OKysrODp6Ylu3bohNTW1KU0wmrYZmlzt8/b2Ro8eParEM+S1U6J9hiZX+4YMGQILCwv9\nMZcvXwZgPtevpvYZklxtc3Bw0B9fVFSkb2djrl2TCkN9FrHV9Jns7Owaj7169SpcXFwAAC4uLrh6\n9SoAIDs7Gx4eHrXGay6GbhsAZGRkQKPRQKvV4rvvvpOlXXXlXp/P1Na+mhjy2gGGbx9gftfvk08+\nwYgRIwCY5/W7u32A4a6fnG2LiopCp06dEB8fjyVLlgBo3LVrUmGo7zoEoR7j24IgVHs+lUpVaxy5\n1kIYum1ubm64dOkSTp06hffeew8REREoLCxsWNIN0JztkzsHOc/dXO0zt+u3bNkyWFtbIyIiosk5\nNIah22fI6ydn25YtW4aLFy9iypQpWLt2baNzaFJhcHd3x6VLl/TfX7p0SVKZqvvM5cuX4eHhUe3r\n7u7uAMTfpHNycgAAV65cwf3331/juf46prkZum3W1tZwdnYGAAQHB8PLywv/+9//ZGlbdbk3pX3V\nHVtXPDmvXXXx5G6fOV2/Tz/9FHv37kVcXFyt5zLV61dd+wx5/QzxbzMiIgIJCQk1nqvOa9eUQZSy\nsjKha9euQkZGhlBSUlLnIMrRo0f1gyi1HTtv3jxh+fLlgiAIQkxMTJUBsJKSEiE9PV3o2rWrUFlZ\n2ZQmGE3brl27JpSXlwuCIAi//vqr4O7uLty4cUOWtsnZvr9otVrh+PHj+u8Nee2UaJ+5XL99+/YJ\nvr6+wrVr1yTnMpfrV1P7DHn95Grb+fPn9cevWbNGmDhxoiAIjbt2TSoMgiAIe/fuFXr06CF4eXkJ\nb731liAIgvDhhx8KH374of4zzz//vODl5SUEBARIZnJUd6wgCEJubq4waNAgoXv37sKQIUMkF2jZ\nsmWCl5eX0LNnTyEpKamp6RtN2xISEgQ/Pz8hKChICA4OFvbs2SNr2+Rq386dOwUPDw/B1tZWcHFx\nEYYPH65/z5DXztDt+/zzz83i+nXr1k3o1KmTEBQUJAQFBQnPPfec/j1zuH41tc/Q10+Otj3++OOC\nv7+/EBAQIIwZM0bIzs7Wv9fQa8cFbkREJMFHexIRkQQLAxERSbAwEBGRBAsDERFJsDAQEZEECwMR\nEUmwMFCLNmPGDLi4uKBXr16S11NSUtClSxf9NswODg7w9vaGRqPBU089pUyyRAbCdQzUoiUnJ6N1\n69Z48sknkZaWpn998eLFCAoKwvjx4wEAAwYMwMqVKxEcHKxUqkQGwzsGatHCwsL0e+Tc7euvv8bg\nwYMlr/F3KGopWBiI7nH9+nVYWVlJ9rcH5N1NlMiYsDAQ3WP//v0YNmyY0mkQKYaFgegeSUlJGD58\nuNJpECmGhYHoLoIg4KeffkJgYKDSqRApxlLpBIiUFB4ejsOHD+P69evo2LEjXnzxRc48ohaP01WJ\n7rJs2TJ0794dkyZNUjoVIsWwMBARkQTHGIiISIKFgYiIJFgYiIhIgoWBiIgkWBiIiEiChYGIiCRY\nGIiISOL/AVf2bVIyj9ReAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x7fe3a9ddb6d0>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The energy gap of Ge = 0.667947295491 eV\n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.9,Page number 199"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "h = 6.626*10**-34;  # Planck's constant, Js\n",
      "c = 3*10**8;      # Speed of light, m/s\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, J/eV\n",
      "x = 0.07;   # Al concentration in host GaAs\n",
      "E_g = 1.424 + 1.266*x + 0.266*x**2;    # Band gap of GaAs as a function of x, eV\n",
      "# As E_g = h*c/lambda, solving for lambda\n",
      "lamda = h*c/(E_g*e);   # Emission wavelength of light, m\n",
      "print\"The energy band gap of Al doped GaAs =\",round(E_g,3),\"eV\";\n",
      "print\"The emission wavelength of light =\",round(lamda*10**6,3),\"micron\";\n",
      "print\"The Al atoms go as substitutional impurity in the host material.\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The energy band gap of Al doped GaAs = 1.514 eV\n",
        "The emission wavelength of light = 0.821 micron\n",
        "The Al atoms go as substitutional impurity in the host material.\n"
       ]
      }
     ],
     "prompt_number": 30
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.10,Page number 200"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "x = 0.38;   # Al concentration in host GaAs\n",
      "E_g = 1.424 + 1.266*x + 0.266*x**2;    # Band gap of GaAs as a function of x, eV\n",
      "print\"The energy band gap of 38 percent Al doped in GaAs =\",round(E_g,3),\"eV\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The energy band gap of 38 percent Al doped in GaAs = 1.943 eV\n"
       ]
      }
     ],
     "prompt_number": 32
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.11,Page number 200"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "k = 1.38*10**-23;  # Boltzmann constant, J/mol/K\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, J/eV\n",
      "rho_40 = 0.2;   # Resistivity of Ge at 40 degree celsius, ohm-m\n",
      "T1 = 40+273;    # Temperature at which resistivity of Ge becomes 0.2 ohm-m, K\n",
      "T2 = 20+273;    # Temperature at which resistivity of Ge is to be calculated, K\n",
      "E_g = 0.7;  # Band gap of Ge, eV\n",
      "# As rho = exp(E_g/(2*k*T)), so for rho_20\n",
      "rho_20 = rho_40*exp(E_g/(2*k/e)*(1.0/T2-1.0/T1));  # Resistivity of Ge at 20 degree celsius, ohm-m\n",
      "print\"The resistivity of Ge at 20 degree celsius =\",round(rho_20,1),\"ohm-m\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The resistivity of Ge at 20 degree celsius = 0.5 ohm-m\n"
       ]
      }
     ],
     "prompt_number": 35
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.12,Page number 203"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "k = 1.38*10**-23;  # Boltzmann constant, J/mol/K\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, J/eV\n",
      "T = 300.0;        # Room temperature of the material, K\n",
      "K_Si = 11.7;    # Dielectric constant of Si\n",
      "K_Ge = 15.8;    # Dielectric constant of Ge\n",
      "m = 9.1*10**-31;   # Mass of an electron, kg\n",
      "m_eff = 0.2;    # Effective masses of the electron in both Si and Ge, kg\n",
      "E_ion_Si = 13.6*m_eff/K_Si**2;   # Donor ionization energy of Si, eV\n",
      "E_ion_Ge = 13.6*m_eff/K_Ge**2;   # Donor ionization energy of Ge, eV\n",
      "E = k*T/e;      # Energy available for electrons at 300 K, eV\n",
      "print\"The donor ionization energy of Si =\",round(E_ion_Si,4),\"eV\";\n",
      "print\"The donor ionization energy of Ge =\",round(E_ion_Ge,4),\"eV\";\n",
      "print\"The energy available for electrons at 300 K =\",round(E,4),\"eV\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The donor ionization energy of Si = 0.0199 eV\n",
        "The donor ionization energy of Ge = 0.0109 eV\n",
        "The energy available for electrons at 300 K = 0.0259 eV\n"
       ]
      }
     ],
     "prompt_number": 38
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.13,Page number 203"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, J/eV\n",
      "epsilon = 15.8;  # Dielectric constant of Ge   \n",
      "m = 9.1*10**-31;   # Mass of an electron, kg\n",
      "m_e = 0.2*m;     # Effective masses of the electron in Ge, kg\n",
      "a_Ge = 5.65;    # Lattice parameter of Ge, angstrom\n",
      "A_d = 0.53*epsilon*(m/m_e);    # Radius of donor atom, angstrom\n",
      "print\"The radius of the orbits of fifth valence electron of acceptor impurity =\",ceil(A_d),\"angstrom\";\n",
      "print\"This radius is\",ceil(A_d/a_Ge),\"times the lattice constant of Ge\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The radius of the orbits of fifth valence electron of acceptor impurity = 42.0 angstrom\n",
        "This radius is 8.0 times the lattice constant of Ge\n"
       ]
      }
     ],
     "prompt_number": 43
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.14,Page number 203"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, J/eV\n",
      "tau = 10**-12;   # Life time of electron in Ge, s\n",
      "m = 9.1*10**-31;   # Mass of an electron, kg\n",
      "m_e = 0.5*m;     # Effective masses of the electron in Ge, kg\n",
      "mu = e*tau/m_e;   # Mobility of electron in Ge, m-square/V-s\n",
      "n_i = 2.5*10**19;     # Intrinsic carrier concentration of Ge at room temperature, per metre cube\n",
      "n_Ge = 5*10**28;  # Concentration of Ge atoms, per metre cube\n",
      "n_e = n_Ge/10**6;    # Concentration of impurity atoms, per metre cube\n",
      "# From law of mass action, n_e*n_h = n_i**2, solving for n_h\n",
      "n_h = n_i**2/n_e;    # Concentration of holes, per metre cube\n",
      "\n",
      "print\"This mobility of electron in Ge =\",round(mu/10**-4,1),\"cm-square/V-s\";\n",
      "print\"This concentration of holes in Ge =\",\"{0:.3e}\".format(n_h),\"per metre cube\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "This mobility of electron in Ge = 3516.5 cm-square/V-s\n",
        "This concentration of holes in Ge = 1.250e+16 per metre cube\n"
       ]
      }
     ],
     "prompt_number": 48
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.15,Page number 204"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "n_i = 2.5*10**19;     # Intrinsic carrier concentration of Ge at room temperature, per metre cube\n",
      "n_Ge = 5*10**28;  # Concentration of Ge atoms, per metre cube\n",
      "delta_d = 10**6;    # Rate at which pentavalent impurity is doped in pure Ge, ppm\n",
      "n_e = n_Ge/delta_d;    # Concentration of impurity atoms, per metre cube\n",
      "# From law of mass action, n_e*n_h = n_i**2, solving for n_h\n",
      "n_h = n_i**2/n_e;    # Concentration of holes, per metre cube\n",
      "\n",
      "print\"This concentration of holes in Ge =\",\"{0:.3e}\".format(n_h),\"per metre cube\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "This concentration of holes in Ge = 1.250e+16 per metre cube\n"
       ]
      }
     ],
     "prompt_number": 51
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.16,Page number 205"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "e = 1.6*10**-19;   # Charge on an electron, C\n",
      "mu = 1400*10**-4;  # Mobility of electron, metre-square per volt per sec\n",
      "l = 300-6;    # Length of the n-type semiconductor, m\n",
      "w = 100-6;    # Width of the n-type semiconductor, m\n",
      "t = 20-6;     # Thickness of the n-type semiconductor, m\n",
      "N_D = 4.5*10**21; # Doping concentration of donor impurities, per metre-cube\n",
      "V = 10;     # Biasing voltage for semiconductor, V\n",
      "B_prep = 1; # Perpendicular magnetic field to which the semiconductor is subjected, tesla\n",
      "\n",
      "# Part (a)\n",
      "n = N_D;    # Electron concentration in semiconductor, per cc\n",
      "R_H = -1.0/(n*e); # Hall Co-efficient, per C per metre cube\n",
      "\n",
      "# Part (b)\n",
      "rho = 1.0/(n*e*mu);       # Resistivity of semiconductor, ohm-m\n",
      "R = rho*l/(w*t);    # Resistance of the semiconductor, ohm\n",
      "I = V/R;    # Current through the semiconductor, A\n",
      "V_H = R_H*I*B_prep/t;   # Hall voltage, V\n",
      "\n",
      "# Part (c)\n",
      "theta_H = math.degrees(math.atan(-mu*B_prep));    # Hall angle, degrees\n",
      "\n",
      "\n",
      "print\"Hall coefficient, R_H =\",\"{0:.3e}\".format(R_H),\"per C metre cube\";\n",
      "print\"Hall voltage, V_H = \",math.fabs(V_H),\"V\";\n",
      "print\"Hall angle, theta_H =\",round(theta_H,3),\"degree\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Hall coefficient, R_H = -1.389e-03 per C metre cube\n",
        "Hall voltage, V_H =  0.447619047619 V\n",
        "Hall angle, theta_H = -7.97 degree\n"
       ]
      }
     ],
     "prompt_number": 60
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}