1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
|
{
"metadata": {
"name": "",
"signature": "sha256:583e9a3370db0a45b2805011aaba429aa5ff178400e4cdec220559b9edbb5a50"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter7:BIPOLAR JUNCTION TRANSISTORS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"\n",
"Ex7.2:pg-275"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"alpha_F=.99\n",
"alpha_R=.25\n",
"kbT = 0.026\n",
"# for part a\n",
"Ic1 = 1.0\n",
"Ib1 = .02\n",
"\n",
"VCE= kbT*log((((Ic1*(1-alpha_R))+Ib1)*alpha_F)/(((alpha_F*Ib1)-((Ic1*(1-alpha_F))))*alpha_R))\n",
"print\"The saturation voltage is ,VCE=\",\"{:.2e}\".format(VCE),\" V\"\n",
" #for part b\n",
"Ic2 = 5.0\n",
"Ib2 = .075\n",
"VCE1= kbT*log((((Ic2*(1-alpha_R))+Ib2)*alpha_F)/(((alpha_F*Ib2)-((Ic2*(1-alpha_F))))*alpha_R))\n",
"print\"The saturation voltage is ,VCE1=\",\"{:.2e}\".format(VCE1),\" V\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The saturation voltage is ,VCE= 1.49e-01 V\n",
"The saturation voltage is ,VCE1= 1.67e-01 V\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"\n",
"Ex7.3:pg-278"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"nbo = 2.25*10**3\n",
"peo = 112.5\n",
"pco = 2.25*10**4\n",
"# using law of mass action for a homogeneous semiconductor, we have relation peo*neo=nbo*pbo=ni**2 \n",
"ni_power_2 = nbo/peo\n",
"print\"square of electron density of ionisation electron for npn silicon transistor is ni**2 = \",\"{:.2e}\".format(ni_power_2),\"cm**-3\"\n",
"pbo = 10**16\n",
"V = (1.0-((peo)/(10*nbo)))\n",
"print\"The emitter efficiency (gamma)is,V =\",\"{:.2e}\".format(V)\n",
"neo = ni_power_2*pbo\n",
"print\"The required emitter doping is,neo =\",\"{:.2e}\".format(neo),\"cm**-3\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" square of electron density of ionisation electron for npn silicon transistor is ni**2 = 2.00e+01 cm**-3\n",
"The emitter efficiency (gamma)is,V = 9.95e-01\n",
"The required emitter doping is,neo = 2.00e+17 cm**-3\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.4:pg-279"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"B= 0.997\n",
"Db = 10.0\n",
"Tb = 10**-6\n",
"Lb = sqrt(Db*Tb)\n",
"print\"The electron carrier diffusion length is,Lb =\",\"{:.2e}\".format(Lb),\"cm\"\n",
"# assume the neutral basewidth Wbn is equal to actual basewidth Wb\n",
"Wbn = sqrt((1-B)*(2*(Lb**2)))\n",
"print\"The base width is,Wb =\",\"{:.2e}\".format(Wbn),\"cm\"\n",
"# Note : due to different precisions taken by me and the author ... my answer differ \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electron carrier diffusion length is,Lb = 3.16e-03 cm\n",
"The base width is,Wb = 2.45e-04 cm\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.5:pg-279"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# using values from the result of Example 7.1\n",
"VEB = 0.6\n",
"Ic = 0.2268*10**-3\n",
"Ib = 4.92*10**-6\n",
"kbT = 0.026\n",
"Beta = Ic/Ib\n",
"print\"The current gain Beta =\",round(Beta)\n",
"gm = Ic/kbT\n",
"print\"The transconductance is,gm =\",\"{:.2e}\".format(gm),\"S\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The current gain Beta = 46.0\n",
"The transconductance is,gm = 8.72e-03 S\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.6:pg-279"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"De = 20.0\n",
"Db=De\n",
"Nde = 5*10**17\n",
"Nab = 10**17\n",
"Wb = 10**-4\n",
"ni = 1.5*10**10\n",
"# for case (a) value of Te=10**-6s\n",
"Te1 = 10**-6\n",
"Le1 = sqrt(De*Te1)\n",
"Lb1=Le1\n",
"peo1 = (ni)**2/Nde\n",
"print\"The majority carrier densities for the emitter in npn transistor is,peo = \",\"{:.2e}\".format(peo1),\"cm**-3\"\n",
"nbo1 = (ni)**2/Nab\n",
"print\"The majority carrier densities for the base in npn transistor is,nbo =\",\"{:.2e}\".format(nbo1),\"cm**-3\"\n",
"alpha_1 = (1.0-((peo1*De*Wb)/(nbo1*Db*Le1)))*(1-((Wb**2)/(2*Le1**2)))\n",
"print\"The current gain is,alpha_ =\"\"{:.2e}\".format(alpha_1)\n",
"Beta1 = (alpha_1)/(1.0-alpha_1)\n",
"print\"The current gain Beta1 =\",round(Beta1,1)\n",
"#for case (b) value of Te=10**-8s\n",
"Te2 = 10**-8\n",
"Le2 = sqrt(De*Te2)\n",
"print\"The diffusion length is,Le =\",\"{:.2e}\".format(Le2),\"cm\"\n",
"peo2 = (ni)**2/Nde\n",
"nbo2 = (ni)**2/Nab\n",
"alpha_2 = (1-((peo2*De*Wb)/(nbo2*Db*Le2)))*(1-((Wb**2)/(2*Le2**2)))\n",
"print\"The current gain alpha_ =\",\"{:.2e}\".format(alpha_2)\n",
"Beta2 = (alpha_2)/(1-alpha_2)\n",
"print\"The current gain Beta2 =\",round(Beta2,1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The majority carrier densities for the emitter in npn transistor is,peo = 4.50e+02 cm**-3\n",
"The majority carrier densities for the base in npn transistor is,nbo = 2.25e+03 cm**-3\n",
"The current gain is,alpha_ =9.95e-01\n",
"The current gain Beta1 = 210.8\n",
"The diffusion length is,Le = 4.47e-04 cm\n",
"The current gain alpha_ = 9.31e-01\n",
"The current gain Beta2 = 13.6\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"\n",
"Ex7.7:pg-281"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"nbo = 2.25*10**3\n",
"peo = 112.5\n",
"Db = 30.0\n",
"De = 10.0\n",
"Nde = 10**18\n",
"Nab = 10**16\n",
"Lb = 10*10**-4\n",
"Le = 4*10**-4\n",
"kbT = 0.026\n",
"Wb = 0.5*10**-4\n",
"We1 = 10*10**-4\n",
"We2 = 1.0*10**-4\n",
"e = 1.6*10**-19\n",
"print\"for emitter thickness = 10*10**-4 cm\"\n",
"gamma_1 = (((Db*nbo*math.tan(Lb/Wb))/(Lb))/(((Db*nbo*math.tan(Lb/Wb))/Lb)+((De*peo*math.tan(Le/We1))/Le)))\n",
"print\"The emitter efficiency gamma_1 =\",\"{:.2e}\".format(gamma_1)\n",
"print\"for emitter thickness = 10**-4 cm\"\n",
"gamma_2 = (((Db*nbo*math.tan(Lb/Wb))/(Lb))/(((Db*nbo*math.tan(Lb/Wb))/Lb)+((De*peo*math.tan(Le/We2))/Le)))\n",
"print\"The emitter efficiency (gamma)is,gamma_2 =\"\"{:.1e}\".format(gamma_2)\n",
"#NOTE: In the textbook author has used approximate value for the calculation of gamma thus the above solution is differ from that of the gamma"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"for emitter thickness = 10*10**-4 cm\n",
"The emitter efficiency gamma_1 = 9.92e-01\n",
"for emitter thickness = 10**-4 cm\n",
"The emitter efficiency (gamma)is,gamma_2 =9.8e-01\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.8:pg-289"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"Ndc = 5*10**15\n",
"Nab = 5*10**16\n",
"ni = sqrt(2.25*10**20)\n",
"kbT = 0.026\n",
"e = 1.6*10**-19\n",
"Vbi= (kbT)*((log((Nab*Ndc)/(ni**2))))\n",
"print\"The built in voltage is ,Vbi=\",\"{:.2e}\".format(Vbi),\"V\"\n",
"print\" for an applied bias of 1 V \"\n",
"VCB1 = 1\n",
"apsilent_s = 11.9*8.85*10**-14\n",
"Wb = 10**-4\n",
"dWb1 = sqrt((2*apsilent_s*(Vbi+VCB1)*Ndc)/(e*Nab*(Nab+Ndc)))\n",
"print\"The extent of depletion into the base side is,dWb =\",\"{:.2e}\".format(dWb1),\"cm\"\n",
"Wbn1 = Wb-dWb1\n",
"print\"The neutral base width is,Wbn =\",\"{:.2e}\".format(Wbn1),\"cm\"\n",
"nbo = ((ni)**2)/Nab\n",
"print\"The required base doping is,nbo =\",\"{:.2e}\".format(nbo),\"cm**-3\"\n",
"Db = 20\n",
"VBE = 0.7\n",
"Jc1 = ((e*Db*nbo)/Wbn1)*(exp(VBE/kbT))\n",
"print\"The collector current density is,Jc1 =\",\"{:.2e}\".format(Jc1),\"A/cm**2\"\n",
"print\" for an applied bias of 5 V \"\n",
"VCB2 = 5.0\n",
"VCE1= VCB1+VBE\n",
"print\"The collector emitter voltage is ,VCE=\",\"{:.2e}\".format(VCE1),\" V\"\n",
"VCE2= VCB2+VBE\n",
"print\"The collector emitter voltage is ,VCE=\",\"{:.2e}\".format(VCE2),\" V\"\n",
"dWb2 = sqrt((2*apsilent_s*(Vbi+VCB2)*Ndc)/(e*Nab*(Nab+Ndc)))\n",
"print\"The extent of depletion into the base side is,dWb =\",\"{:.2e}\".format(dWb2),\"cm\"\n",
"Wbn2 = Wb-dWb2\n",
"print\"The neutral base width is,Wbn =\",\"{:.2e}\".format(Wbn2),\"cm\"\n",
"Jc2 = ((e*Db*nbo)/Wbn2)*(exp(VBE/kbT))\n",
"print\"The collector current density is,Jc =\",\"{:.2e}\".format(Jc2),\" A/cm**2\"\n",
"VA = (Jc1/((Jc2-Jc1)/(VCE2-VCE1)))-(VCE1)\n",
"print\"The Early voltage is,VA =\",\"{:.2e}\".format(VA),\"V\"\n",
"# Note : due to different precisions taken by me and the author ... my answer differ by \"0.2\" value."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The built in voltage is ,Vbi= 7.21e-01 V\n",
" for an applied bias of 1 V \n",
"The extent of depletion into the base side is,dWb = 6.42e-06 cm\n",
"The neutral base width is,Wbn = 9.36e-05 cm\n",
"The required base doping is,nbo = 4.50e+03 cm**-3\n",
"The collector current density is,Jc1 = 7.58e+01 A/cm**2\n",
" for an applied bias of 5 V \n",
"The collector emitter voltage is ,VCE= 1.70e+00 V\n",
"The collector emitter voltage is ,VCE= 5.70e+00 V\n",
"The extent of depletion into the base side is,dWb = 1.17e-05 cm\n",
"The neutral base width is,Wbn = 8.83e-05 cm\n",
"The collector current density is,Jc = 8.03e+01 A/cm**2\n",
"The Early voltage is,VA = 6.51e+01 V\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"\n",
"Ex7.9:pg-290"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"Ndc = 10**16\n",
"Nab = 5*10**16\n",
"e = 1.6*10**-19\n",
"apsilen = 11.9*8.85*10**-14\n",
"Wb = .2*10**-4\n",
"Vpt= ((e*(Wb**2)*Nab*(Ndc+Nab))/(2*apsilen*Ndc))\n",
"print\"The punchthrough voltage is ,Vpt=\",round(Vpt,2),\"V\"\n",
"Twb = 1.2*10**-4\n",
"F = Vpt/Twb\n",
"print\"The average field at punchthrough voltage is ,F =\",\"{:.2e}\".format(F),\"V/cm\"\n",
"# Note : due to different precisions taken by me and the author ... my answer differ by \"0.16\" value."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The punchthrough voltage is ,Vpt= 9.12 V\n",
"The average field at punchthrough voltage is ,F = 7.60e+04 V/cm\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.10:pg-290"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"apsilent_s = 11.9*8.85*10**-14\n",
"Ndc = 5.0*10**16\n",
"Nde = 10**18\n",
"Nab = 10**17\n",
"ni = sqrt(2.25*10**20)\n",
"kbT = 0.026\n",
"e = 1.6*10**-19\n",
"Db = 30.0\n",
"De = 10\n",
"Lb = 15*10**-4\n",
"Le = 5*10**-4\n",
"Beta= 100\n",
"nbo = 2.25*10**3\n",
"peo = 112.5\n",
"VCB1 = 5.0\n",
"#\"using relation B = (IC/IB) = ((Db*nbo*Le)/(De*peo*Wbn))\"\n",
"Wbn = ((Db*nbo*Le)/(De*peo*100))\n",
"print\"neutral base width is ,Wbn =\",\"{:.2e}\".format(Wbn),\"cm\"\n",
"Vbi= (kbT)*((log((Nab*Ndc)/(ni**2))))\n",
"print\"The built in voltage is ,Vbi=\",\"{:.2e}\".format(Vbi),\"V\"\n",
"dWb1 = sqrt((2*apsilent_s*(Vbi+VCB1)*Ndc)/(e*Nab*(Nab+Ndc)))\n",
"print\"The extent of depletion into the base side is,dWb =\",\"{:.2e}\".format(dWb1),\"cm\"\n",
"Wb = Wbn+dWb1\n",
"print\"The base width is,Wb = Wbn+dWb1= \",\"{:.2e}\".format(Wb),\"cm\"\n",
"\n",
"# NOTE: the value calculated for Wbn is wrong in the book and all the succesive answer also depeandant on that are also wrong\n",
"\n",
"#(\"Two disadvange are\")\n",
"#(\"The output conductance will suffer and the collector current will have a stronger dependence on VCB\")\n",
"#(\"The device may suffer punchthrough at a lower bias\")\n",
"#(\"Two advantages\")\n",
"#(\"The current gain will be higher\")\n",
"#(\"The device speed will be faster\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"neutral base width is ,Wbn = 3.00e-04 cm\n",
"The built in voltage is ,Vbi= 7.99e-01 V\n",
"The extent of depletion into the base side is,dWb = 1.60e-05 cm\n",
"The base width is,Wb = Wbn+dWb1= 3.16e-04 cm\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"\n",
"Ex7.11:pg-291"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"Ndc = 10**16\n",
"Nab = 10**17\n",
"Nde = 10**18\n",
"ni = 1.5*10**10\n",
"kbT = 0.026\n",
"e = 1.6*10**-19\n",
"Db = 30.0\n",
"De = 10.0\n",
"Lb = 10*10**-4\n",
"Le = 10*10**-4\n",
"Wb = 10**-4\n",
"We = 10**-4\n",
"Vbi= (kbT)*((log((Nab*Ndc)/ni**2)))\n",
"print\"The built in voltage is ,Vbi= (kbT)*((log((Na*Nd)/Ni**2)))= \",\"{:.2e}\".format(Vbi),\"V\"\n",
"print\" for an applied reverse bias of 5 V \"\n",
"VCB1 = 5.0\n",
"apsilen = 11.9*8.85*10**-14\n",
"nbo = 2.25*10**3\n",
"peo = 112.5\n",
"dWb1 = sqrt((2*apsilen*(Vbi+VCB1)*Ndc)/(e*Nab*(Nab+Ndc)))\n",
"print\"The extent of depletion into the base side is,dWb =\",\"{:.2e}\".format(dWb1),\"cm\"\n",
"Wbn1 = Wb-dWb1\n",
"print\"The neutral base width is,Wbn = Wb-dWb1= \",\"{:.2e}\".format(Wbn1),\"cm\"\n",
"gamma_e_1 = (1-((peo*De*Wbn1)/(Db*nbo*We)))\n",
"print\"The emitter efficiency gamma_e_1 =\",\"{:.2e}\".format(gamma_e_1)\n",
"B1 = 1-((Wbn1**2)/(2*(Lb)**2))\n",
"print\"The base transport factor is,B =\"\"{:.2e}\".format(B1)\n",
"alpha1 = gamma_e_1*B1\n",
"print\"The current gain alpha1 =\"\"{:.2e}\".format(alpha1)\n",
"Beta3 = (alpha1)/(1-alpha1)\n",
"print\"The current gain Beta3 =\"\"{:.2e}\".format(Beta3)\n",
"VBE = 1.0\n",
"A= 4.0*10**-6\n",
"IC = (((e*A*Db*nbo)/(Wbn1))*(exp((VBE)/(kbT))-1))\n",
"print\"The collector current is,IC =\",\"{:.2e}\".format(IC),\"A\"\n",
"#Note: in text book the author hasused precision value for gamma and alpha thats why there is difference in the value of beta.\n",
"print\" for an applied reverse bias of 6 V \"\n",
"VCB2 = 6.0\n",
"dWb2 = sqrt((2*apsilen*(Vbi+VCB2)*Ndc)/(e*Nab*(Nab+Ndc)))\n",
"print\"The extent of depletion into the base side is,dWb2 =\",\"{:.2e}\".format(dWb2),\"cm\"\n",
"Wbn2 = Wb-dWb2\n",
"print\"The neutral base width is,Wbn2 =\",\"{:.2e}\".format(Wbn2),\"cm\"\n",
"IC2 = (((e*A*Db*nbo)/(Wbn2))*(exp((VBE)/(kbT))-1))\n",
"print\"The collector current is,IC =\",\"{:.2e}\".format(IC2),\"A\"\n",
"go = (IC2-IC)/(VCB2-VCB1)\n",
"print\"The output conductance is,go =\",\"{:.2e}\".format(go),\"ohm**-1\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The built in voltage is ,Vbi= (kbT)*((log((Na*Nd)/Ni**2)))= 7.57e-01 V\n",
" for an applied reverse bias of 5 V \n",
"The extent of depletion into the base side is,dWb = 8.30e-06 cm\n",
"The neutral base width is,Wbn = Wb-dWb1= 9.17e-05 cm\n",
"The emitter efficiency gamma_e_1 = 9.85e-01\n",
"The base transport factor is,B =9.96e-01\n",
"The current gain alpha1 =9.81e-01\n",
"The current gain Beta3 =5.05e+01\n",
"The collector current is,IC = 2.38e+01 A\n",
" for an applied reverse bias of 6 V \n",
"The extent of depletion into the base side is,dWb2 = 8.99e-06 cm\n",
"The neutral base width is,Wbn2 = 9.10e-05 cm\n",
"The collector current is,IC = 2.40e+01 A\n",
"The output conductance is,go = 1.81e-01 ohm**-1\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.12:pg-310"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"kbT = 0.026\n",
"Wb = 0.4*10**-4\n",
"e = 1.6*10**-19\n",
"IE = 1.5*10**-3\n",
"Db = 60.0\n",
"Wdc = 2*10**-4\n",
"Cje = 2*10**-12\n",
"rC = 30.0\n",
"TcC = .4*10**-12\n",
"#NOTE:Total collector capicitance represented in book as(Cu+Cs)\n",
"vs = 10**7\n",
"re = kbT/IE\n",
"Te = re*Cje\n",
"Tt = (Wb**2)/(2*Db)\n",
"Td = (Wdc)/vs\n",
"Tc = rC*Tc\n",
"Tec = Te+Tt+Td+Tc\n",
"print\"The total time is,Tec =\",\"{:.2e}\".format(Tec),\"s\"\n",
"fT = 1/(2*math.pi*Tec)\n",
"print\"fT=\",\"{:.2e}\".format(fT),\"HZ\"\n",
"print\"if the emitter current is doubled the time is reduced by half and cutoff frequency becomes 2.54 GHz\"\n",
"print\"if the base width is reduced by half , the base transit time becomes 3.3 ps and cutoff frequency becomes 2.08 GHz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Te= 3.47e-11 S\n",
"TC= 3.60e-10 S\n",
"The total time is,Tec = 4.28e-10 s\n",
"fT= 3.72e+08 HZ\n",
"if the emitter current is doubled the time is reduced by half and cutoff frequency becomes 2.54 GHz\n",
"if the base width is reduced by half , the base transit time becomes 3.3 ps and cutoff frequency becomes 2.08 GHz\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.13:pg-319"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"T = 300.0\n",
"Nd1 = 10**18\n",
"Nd2 = 10**20\n",
"dEg1 = (22.5*sqrt((Nd1*300)/((10**18)*T)))/10**3\n",
"print\"The bandgap narrowing is,dEg = \",\"{:.2e}\".format(dEg1),\"ev\"\n",
"dEg2= (22.5*sqrt((Nd2*300)/((10**18)*T)))/10**3\n",
"print\"The bandgap narrowing is,dEg =\",\"{:.2e}\".format(dEg2),\"ev\"\n",
"kbT =0.026\n",
"neo1 = 10**18\n",
"neo2 = 10**20\n",
"ni = sqrt(2.25*10**20)\n",
"peo1 = (ni**2*exp(dEg1/kbT))/neo1\n",
"print\"The hole density in emitter is,peo =\",\"{:.2e}\".format(peo1),\"cm**-3\"\n",
"# note:-there is error in the unit of peo in the book\n",
"peo2 = (ni**2*exp(dEg2/kbT))/neo2\n",
"print\"The hole density in emitter is,peo2 =\",\"{:.2e}\".format(peo2),\"cm**-3\"\n",
"# Note : due to different precisions taken by me and the author ... my answer differ "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The bandgap narrowing is,dEg = 2.25e-02 ev\n",
"The bandgap narrowing is,dEg = 2.25e-01 ev\n",
"The hole density in emitter is,peo = 5.35e+02 cm**-3\n",
"The hole density in emitter is,peo2 ="
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 1.29e+04 cm**-3\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7.14:pg-319"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"ni = 2.2*10**6\n",
"Nde = 5*10**17\n",
"Nab = 10**17\n",
"kbT = 0.026\n",
"Wb = 0.5*10**-4\n",
"Db = 100.0\n",
"De = 15.0\n",
"Le = 1.5*10**-4\n",
"dEg = 0.36\n",
"print(\" For GaAs \")\n",
"peo1 = ni**2/Nde\n",
"print\"The minority carrier densities for the emitter in npn GaAs BJT is,peo(GaAs) =\",\"{:.1e}\".format(peo1),\"cm**-3\"\n",
"nbo1 = ni**2/Nab\n",
"print\"The minority carrier densities for the base in npn GaAs BJT is,nbo = \",\"{:.2e}\".format(nbo1),\"cm**-3\"\n",
"Ve1 = (1-((peo1*De*Wb)/(Db*nbo1*Le)))\n",
"print\"The emitter efficiency (gamma)is,Ve =\",\"{:.2e}\".format(Ve1)\n",
"gammae=1-((peo1*De*Wb)/(nbo1*Db*Le))\n",
"print\"gammae=\",round(gammae,2)\n",
"print(\" For HBT \")\n",
"peo2 = (peo1)*(exp(-(dEg/kbT)))\n",
"print\"The minority carrier densities for the emitter in HBT is,peo(HBT) =\",\"{:.1e}\".format(peo2),\"cm**-3\"\n",
"print\"in this case the emitter efficiency is essentially unity\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" For GaAs \n",
"The minority carrier densities for the emitter in npn GaAs BJT is,peo(GaAs) = 9.7e-06 cm**-3\n",
"The minority carrier densities for the base in npn GaAs BJT is,nbo = 4.84e-05 cm**-3\n",
"The emitter efficiency (gamma)is,Ve = 9.90e-01\n",
"gammae= 0.99\n",
" For HBT \n",
"The minority carrier densities for the emitter in HBT is,peo(HBT) = 9.4e-12 cm**-3\n",
"in this case the emitter efficiency is essentially unity\n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|