1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
{
"metadata": {
"name": "",
"signature": "sha256:04a6842d7b11c3362cf74422ffc19db29b3f2ea1cd75fe882bcb992815e56505"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"\n",
"Chapter6:SEMICONDUCTOR JUNCTIONS WITH METALS AND INSULATORS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6.1:pg-226"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"e = 1.6*10**-19\n",
"n = 10**22\n",
"rho = 2.7*10**(-6)\n",
"print\"using following terms J = Current density ; s(sigma) = 1/rho = conductivity ; F = Electric field \"\n",
"print\"Using relations J = s*F = n*e*v = n*e*u*F ; we get\"\n",
"mu_ = 1.0/(n*e*rho)\n",
"print\"The mobility of electrons in aluminium is ,mu_ =\",\"{:.2e}\".format(mu_),\"cm**2(Vs)**-1\"\n",
"#The answer given in the book is 240.4 cm**2/Vs which is wrong\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"using following terms J = Current density ; s(sigma) = 1/rho = conductivity ; F = Electric field \n",
"Using relations J = s*F = n*e*v = n*e*u*F ; we get\n",
"The mobility of electrons in aluminium is ,mu_ = 2.31e+02 cm**2(Vs)**-1\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"\n",
"Ex6.2:pg-232"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"e = 1.6*10**-19\n",
"apsilen = 11.9*8.85*10**-12\n",
"A= 7.85*10**-9\n",
"S= 3*10**24\n",
"Nd = (2/(S*e*apsilen*(A**2)))\n",
"print\"The doping density in silicon is ,Nd =\",\"{:.2e}\".format(Nd),\"m**-3\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The doping density in silicon is ,Nd = 6.42e+20 m**-3\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6.3:pg-236"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"Nd = 10**16\n",
"Nc = 2.8*10**19\n",
"kBT=0.026\n",
"Vf=0.3\n",
"e = 1.6*10**-19\n",
"A= 10**-3\n",
"print\" for W-n type Si schottky barrier \"\n",
"T = 300\n",
"phi_b = 0.67\n",
"print\"schottky barrier heights(in volts) =\",\"{:.2e}\".format(phi_b),\"eV\"\n",
"R = 110\n",
"Is = A*R*(T**2)*(exp(-(phi_b)/(kBT)))\n",
"print\"The reverse saturation current is ,Is =\",\"{:.2e}\".format(Is),\"A\"\n",
"print\"using relation I= Is*(exp((e*V)/(nkBT))-1) and neglecting 1\"\n",
"I = Is*(exp((Vf)/(kBT)))\n",
"print\"I=\",\"{:.1e}\".format(I),\"A\"\n",
"print\" for Si p+ -n junction diode \"\n",
"Na = 10**19\n",
"Db = 10.5\n",
"Tb = 10**-6\n",
"Lb = sqrt(Db*Tb)\n",
"print\"The electron carrier diffusion length is,Lb =\",\"{:.2e}\".format(Lb),\"cm\"\n",
"pn = 2.2*10**4\n",
"Io = A*e*pn*(Db/Lb)\n",
"print\"The saturation current current is Io =\",\"{:.1e}\".format(Io),\"A\"\n",
"I1 = Io*(exp((Vf)/(kBT)))\n",
"print\"The diode current for HBT is ,I =\",\"{:.1e}\".format(I1),\"A\"\n",
"print\"Since diode current for HBT is almost 6 orders of magnitude smaller than the value in the Schottky diode \"\n",
"print\"hence for the p-n diode to have the same current that the schottky dode has at .3 V , the voltage required is .71V\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" for W-n type Si schottky barrier \n",
"schottky barrier heights(in volts) = 6.70e-01 eV\n",
"The reverse saturation current is ,Is = 6.37e-08 A\n",
"using relation I= Is*(exp((e*V)/(nkBT))-1) and neglecting 1\n",
"I= 6.5e-03 A\n",
" for Si p+ -n junction diode \n",
"The electron carrier diffusion length is,Lb = 3.24e-03 cm\n",
"The saturation current current is Io = 1.1e-14 A\n",
"The diode current for HBT is ,I = 1.2e-09 A\n",
"Since diode current for HBT is almost 6 orders of magnitude smaller than the value in the Schottky diode \n",
"hence for the p-n diode to have the same current that the schottky dode has at .3 V , the voltage required is .71V\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"\n",
"Ex6.4:pg-237"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"kBT=0.026\n",
"mo = 9.1*10**-31\n",
"m=0.08*mo\n",
"T = 300\n",
"phi_b1 = 0.7\n",
"phi_b2 = 0.6\n",
"R = 120*(m/mo)\n",
"print\"The effective richardson constant is ,R* =\",round(R,2),\" A cm**-2 k**-2\"\n",
"Js1 = R*(T**2)*(exp(-(phi_b1)/(kBT)))\n",
"print\"The saturation current density is ,Js(phi_b=0.7) =\",\"{:.1e}\".format(Js1),\"A/cm**2\"\n",
"Js2 = R*(T**2)*(exp(-(phi_b2)/(kBT)))\n",
"print\"The saturation current density is ,Js(phi_b=0.6) =\",\"{:.2e}\".format(Js2),\"A/cm**2\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The effective richardson constant is ,R* = 9.6 A cm**-2 k**-2\n",
"The saturation current density is ,Js(phi_b=0.7) = 1.8e-06 A/cm**2\n",
"The saturation current density is ,Js(phi_b=0.6) = 8.21e-05 A/cm**2\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6.5:pg-239"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"apsilen = 11.9*8.85*10**-12\n",
"Nd = 10**16\n",
"Nc = 2.8*10**19\n",
"kBT = 0.026\n",
"I=10*10**-3\n",
"e = 1.6*10**-19\n",
"A= 10**-3\n",
"print\" for W-n type Si schottky barrier \"\n",
"T = 300\n",
"phi_b = 0.67\n",
"R = 110\n",
"Is = A*R*(T**2)*(exp(-(phi_b)/(kBT)))\n",
"V = kBT*(log(I/Is))\n",
"E = kBT*log(Nc/Nd)\n",
"print\"The fermi level positionin the neutral semiconductor(Efs) with respect to the conduction band is,Ec-Efs= E = \",\"{:.2e}\".format(E),\"eV\"\n",
"Vbi= phi_b-(E)\n",
"print\"The built in voltage is ,Vbi=\",\"{:.2e}\".format(Vbi),\"V\"\n",
"Cd = A*sqrt((e*Nd*apsilen)/(2*(Vbi-V)))\n",
"print\"The diode capacitance is ,Cd =\",\"{:.2e}\".format(Cd),\"F\"\n",
"R = kBT/I\n",
"print\"The resistance is ,R =\",\"{:.2e}\".format(R),\"ohm\"\n",
"RC = R*Cd\n",
"print\"The RC time constant is ,RC(schottky) =\",\"{:.2e}\".format(RC),\"s\"\n",
"print\" for Si p+ -n junction diode \"\n",
"Tb = 10**-6\n",
"print\"In the p-n diode the junction capacitance and the small signal resistance will be same as those in the schottky diode\"\n",
"Cdiff = ((I*Tb)/(kBT))\n",
"print\"The diffusion capacitance is ,Cdiff = (I*Tb)/(kBT) = \",\"{:.2e}\".format(Cdiff),\"F\"\n",
"RC1 = R*Cdiff\n",
"print\"The RC time constant is ,RC(p-n) = \",\"{:.2e}\".format(RC1),\"s\"\n",
"print\"From the above RC time constant value it can be concluded that p-n diode is almost 1000 times slower\"\n",
"# Note: due to approximation, the value of diode capicitance and diffusion capacitance are differ from that of the textbook"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" for W-n type Si schottky barrier \n",
"The fermi level positionin the neutral semiconductor(Efs) with respect to the conduction band is,Ec-Efs= E = 2.06e-01 eV\n",
"The built in voltage is ,Vbi="
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 4.64e-01 V\n",
"The diode capacitance is ,Cd = 7.43e-10 F\n",
"The resistance is ,R = 2.60e+00 ohm\n",
"The RC time constant is ,RC(schottky) = 1.93e-09 s\n",
" for Si p+ -n junction diode \n",
"In the p-n diode the junction capacitance and the small signal resistance will be same as those in the schottky diode\n",
"The diffusion capacitance is ,Cdiff = (I*Tb)/(kBT) = 3.85e-07 F\n",
"The RC time constant is ,RC(p-n) = 1.00e-06 s\n",
"From the above RC time constant value it can be concluded that p-n diode is almost 1000 times slower\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"\n",
"Ex6.6:pg-242"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"apsilen = 11.9*8.85*10**-14\n",
"phi_b = 0.66\n",
"mo = 9.1*10**-31\n",
"m=0.34*mo\n",
"e = 1.6*10**-19\n",
"h = 1.05*10**-34\n",
"n1 = 10**18\n",
"n2 = 10**20\n",
"print\"Assume that the built in potential Vbi is same as barrier potential becouse of highly doped semiconductor\"\n",
"W1 = (sqrt((2*apsilen*phi_b)/(e*n1)))/10**-8\n",
"print\"The depletion width is ,W(n=10**18) =\",\"{:.2e}\".format(W1),\" Angstrom\"\n",
"W2 = (sqrt((2*apsilen*phi_b)/(e*n2)))/10**-8\n",
"print\"The depletion width is ,W(n=10**20) =\",\"{:.2e}\".format(W2),\" Angstrom\"\n",
"F1 = phi_b/(W1*10**-8)\n",
"print\"The average field in depletion region for(n=10**18), F1 =\",\"{:.2e}\".format(F1),\"V/cm\"\n",
"F2 = phi_b/(W2*10**-8)\n",
"print\"The average field in depletion region for(n=10**18), F2 =\",\"{:.2e}\".format(F2),\"V/cm\"\n",
"F1 = F1/10**-2\n",
"F2 = F2/10**-2\n",
"T = exp(-(4.0*(2.0*m)**.5*(e*phi_b)**(3.0/2.0))/(3.0*e*F1*h))\n",
"print\"The tunneling current for(n=10**18),T =\",\"{:.2e}\".format(T),\"V/cm\"\n",
"T1 = exp(-(4.0*(2.0*m)**.5*(e*phi_b)**(3.0/2.0))/(3.0*e*F2*h))\n",
"print\"The tunneling current for(n=10**20), T1 =\",\"{:.2e}\".format(T1),\"V/cm\"\n",
"# in the textbook author has used approximate value for depletion width and hence it affect the value of all other answer\n",
"# NOTE: In the textbook author has used approximate answer for tunneling current"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Assume that the built in potential Vbi is same as barrier potential becouse of highly doped semiconductor\n",
"The depletion width is ,W(n=10**18) = 2.95e+02 Angstrom\n",
"The depletion width is ,W(n=10**20) = 2.95e+01 Angstrom\n",
"The average field in depletion region for(n=10**18), F1 = 2.24e+05 V/cm\n",
"The average field in depletion region for(n=10**18), F2 = 2.24e+06 V/cm\n",
"The tunneling current for(n=10**18),T = 2.79e-42 V/cm\n",
"The tunneling current for(n=10**20), T1 = 6.99e-05 V/cm\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6.7:pg-248"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"n = 10**18\n",
"W = 25*10**-4\n",
"R = 100*10**3\n",
"e = 1.6*10**-19\n",
"D= 5000*10**-8\n",
"mu_=100.0\n",
"Ro = 1.0/(n*e*mu_*D)\n",
"print\"The sheet resistance of the film is ,Ro =\",\"{:.2e}\".format(Ro),\" ohm/square\"\n",
"L = (R*W)/Ro\n",
"print\"The length of the desired resistor is ,L =\",\"{:.2e}\".format(L),\" cm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The sheet resistance of the film is ,Ro = 1.25e+03 ohm/square\n",
"The length of the desired resistor is ,L = 2.00e-01 cm\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|