1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
|
{
"metadata": {
"name": "",
"signature": "sha256:89b26be9b34fcc4abdf434215c6ed45e9bed850a39f0e736d3ded9e4d9969c4c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"\n",
"Chapter2:ELECTRONS IN SEMICONDUCTORS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.1:pg-55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"h=1.05*10**-34\n",
"mo = 9.1*10**-31\n",
"E = 0.1*1.6*10**(-19)\n",
"m=0.067*mo\n",
"k = sqrt(2*m*E)/h\n",
"print\"The k-value for an electron in the conduction band of GaAs is ,k = \",\"{:.1e}\".format(k),\"m**-1\"\n",
"ko = 1.625*10**9\n",
"print\"the two value are quite difference since the k value represent effective momentum\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The k-value for an electron in the conduction band of GaAs is ,k = 4.2e+08 m**-1\n",
"the two value are quite difference since the k value represent effective momentum\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.2:pg-56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"mo = 9.1*10**-31\n",
"ml = 0.98*mo\n",
"mt = 0.19*mo\n",
"mhh =0.49*mo\n",
"mlh = 0.16*mo\n",
"mdos = (((6)**(2.0/3))*((ml)*((mt)**2))**(1.0/3))\n",
"print\"The conduction band density of states mass is ,mdos* =\",\"{:.2e}\".format(mdos),\"kg\"\n",
"mdos1 = (((mhh)**(3/2)+(mlh)**(3/2))**(2.0/3))\n",
"print\"The Valence band density of states mass is ,mdos1*=\",\"{:.2e}\".format(mdos1),\"kg\"\n",
"# In the book ,the answer is given in the form of mo\n",
" \n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The conduction band density of states mass is ,mdos* = 9.86e-31 kg\n",
"The Valence band density of states mass is ,mdos1*= 7.05e-21 kg\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.3:pg-59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"h=1.05*10**-34\n",
"mo = 9.1*10**-31\n",
"mhh =0.5*mo\n",
"k = 0.1*10**10\n",
"Ev = 0\n",
"e = 1.6*10**-19\n",
"#(we have assumed the valence band energy Ev=0eV as it is not provided in the book)\n",
"Ee= Ev-(((h**2)*(k**2))/(2*mhh))\n",
"print\"The electron energy in the valence band is ,Ee=\",\"{:.2e}\".format(Ee),\"J\"\n",
"Ee1= Ee/e\n",
"print\"The electron energy in the valence band is ,Ee= Ee/e=\",\"{:.2e}\".format(Ee1),\"eV\"\n",
"Eh= Ev+((((h**2)*(k**2))/(2*mhh))/e)\n",
"print\"The hole energy in the valence band is ,Eh=\",\"{:.2e}\".format(Eh),\"eV\"\n",
"\n",
" \n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electron energy in the valence band is ,Ee= -1.21e-20 J\n",
"The electron energy in the valence band is ,Ee= Ee/e= -7.57e-02 eV\n",
"The hole energy in the valence band is ,Eh= 7.57e-02 eV\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.4:pg-62"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"h=1.06*10**-34\n",
"mo = 9.1*10**-31\n",
"m = 0.067*mo\n",
"print\"m = \",\"{:.2e}\".format(m),\"kg\"\n",
"E = 0.5*1.6*10**-19\n",
"print\"E = \",\"{:.2e}\".format(E),\"J\" #initializing value of electron energy measured from the bandedge\n",
"# Effective momentum of electron in the conduction band of GaAs\n",
"hk = sqrt(2*m*E)\n",
"print\"The effetive momentum of an electron in the conduction band of GaAs is ,hk = \"\"{:.2e}\".format(hk),\"m**-1\"#calculation\n",
"k = hk/h\n",
"print\"the corresponding wavevector is,k = \",\"{:.1e}\".format(k),\"m**-1\"\n",
"#Effective momentum of free electron in the space with same energy\n",
"p = sqrt(2*mo*E)\n",
"print\"The effetive momentum of an electron in the space is ,p = \",\"{:.1e}\".format(p),\"kgms**-1\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"m = 6.10e-32 kg\n",
"E = 8.00e-20 J\n",
"The effetive momentum of an electron in the conduction band of GaAs is ,hk = 9.88e-26 m**-1\n",
"the corresponding wavevector is,k = 9.3e+08 m**-1\n",
"The effetive momentum of an electron in the space is ,p = 3.8e-25 kgms**-1\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.5:pg-63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"h=1.05*10**-34 #initializing value of reduced plancks constant or dirac constant or h-bar\n",
"mo = 9.1*10**-31 #initializing value of mass of electron\n",
"ml = 0.98*mo #initializing value of longitudinal mass\n",
"mt = 0.19*mo #initializing value of transverse mass\n",
"a = 5.43*10**-10 #initializing value of latice constant\n",
"kx = ((2*math.pi*0.95)/a) #initializing value of given k-value in x direction \n",
"ky = ((2*math.pi*0.1)/a) #initializing value of given k-value in y direction \n",
"kz = ((2*math.pi*0.0)/a) #initializing value of given k-value in z direction \n",
"kxo = ((2*math.pi*0.85)/a) #initializing value of k-value for Si occupies the (100) valley in x direction \n",
"kyo = ((2*math.pi*0.0)/a) #initializing value of k-value for Si occupies the (100) valley in y direction \n",
"kzo = ((2*math.pi*0.0)/a) #initializing value of k-value for Si occupies the (100) valley in z direction \n",
"kl = kx-kxo\n",
"print\"the change in k vector in x direction is,kl = kx-kxo = \",\"{:.3e}\".format(kl),\"m**-1\"\n",
"kt = ky-kyo\n",
"print\"the change in k vector in y direction is,kt = ky-kyo = \",\"{:.3e}\".format(kt),\"m**-1\"\n",
"E= (((h**2)*(kl**2))/(2*ml))+(((h**2)*(kt**2))/(2*mt))\n",
"print\"The electron energy measured from the conduction bandege is ,E= \",\"{:.3e}\".format(E),\"J\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the change in k vector in x direction is,kl = kx-kxo = 1.157e+09 m**-1\n",
"the change in k vector in y direction is,kt = ky-kyo = 1.157e+09 m**-1\n",
"The electron energy measured from the conduction bandege is ,E= 5.097e-20 J\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.9:pg-70"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"h=1.05*10**-34 #initializing value of reduced plancks constant or dirac constant or h-bar\n",
"mo = 9.1*10**-31 #initializing value of mass of electron\n",
"me = 0.067*mo #initializing value of effective mass of GaAs\n",
"kbT = 4.16*10**-21 #initializing value of kbT at 300K\n",
"Nc=2*(((me*kbT)/(2*math.pi*(h**2)))**(3/2))\n",
"print\"for GaAs conduction band case effective density of states is ,Nc= \",\"{:.2e}\".format(Nc),\"m**-3\"\n",
"ml = 0.98*mo #initializing value of longitudinal mass\n",
"mt = 0.19*mo #initializing value of transverse mass\n",
"mdos = (((6)**(2.0/3))*((ml)*((mt)**2))**(1.0/3))\n",
"Nc1 = 2*((mdos*kbT)/(2*(math.pi)*(h**2)))**(3/2)\n",
"print\"for silicon conduction band case effective density of states is ,Nc = \",\"{:.2e}\".format(Nc1),\"m**-3\"\n",
"\n",
"# Note : due to different precisions taken by me and the author ... my answer differ \n",
"\n",
"print\"for silicon\"\n",
"mhh =0.5*mo #initializing value of heavy hole mass for silicon\n",
"mlh = 0.15*mo #initializing value of light hole mass for silicon\n",
"Nv1 =((kbT/(2*(math.pi)*(h**2)))**(3/2))*2*(mhh**(3/2)+mlh**(3/2))\n",
"print\"for silicon valence band case effective density of states is ,Nv = \",\"{:.2e}\".format(Nv1),\"m**-3\"\n",
"print\"for GaAs \"\n",
"mhh1 =0.45*mo #initializing value of heavy hole mass\n",
"mlh1 = 0.08*mo #initializing value of light hole mass\n",
"Nv = 2*(mhh1**(3/2)+mlh1**(3/2))*((kbT/(2*(math.pi)*(h**2)))**(3/2))\n",
"print\"for GaAs valence band case effective density of states is ,Nv= \",\"{:.2e}\".format(Nv),\"m**-3\"\n",
"\n",
"# Answer given in the book for valence band case is wrong\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"for GaAs conduction band case effective density of states is ,Nc= 7.32e+15 m**-3\n",
"for silicon conduction band case effective density of states is ,Nc = 1.18e+17 m**-3\n",
"for silicon\n",
"for silicon valence band case effective density of states is ,Nv = 7.10e+16 m**-3\n",
"for GaAs \n",
"for GaAs valence band case effective density of states is ,Nv= 5.79e+16 m**-3\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.10:pg-70"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"mo = 9.1*10**-31 #initializing value of mass of electron\n",
"me = 0.067*mo #initializing value of effective mass of GaAs\n",
"kbT = 0.026 #initializing value of kbT at 300K\n",
"ml = 0.98*mo #initializing value of longitudinal mass\n",
"mt = 0.19*mo #initializing value of transverse mass\n",
"mh = 0.55*mo #initializing value of density of state mass for the valence band \n",
"#let\n",
"Eg = 0.0 #initializing value of valence bandedge energy\n",
"mdos = (((6)**(2/3))*((ml)*((mt)**2))**(1.0/3))\n",
"print\"The desity of states of effective mass of the combined six valleys of silicon is mdos* = \",\"{:.2e}\".format(mdos),\"kg\"\n",
"Efi = (Eg/2)+((3.0/4)*kbT*log(mh/mdos))\n",
"print\"The intrinsic fermi level is given by Efi= \",\"{:.2e}\".format(Efi),\"eV\"\n",
"# -ve sign show that fermi level is below the centre of mid-bandgap\n",
"# In this question the answer is provided in the book is in terms of Eg and i have assumed value of Eg = 0 V \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The desity of states of effective mass of the combined six valleys of silicon is mdos* = 2.99e-31 kg\n",
"The intrinsic fermi level is given by Efi= 1.01e-02 eV\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.11:pg-71"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"mo = 9.1*10**-31 #initializing value of mass of electron\n",
"me = 0.027*mo #initializing value of effective mass of GaAs\n",
"kbT = 0.026 #initializing value of kbT at 300K\n",
"mh = 0.4*mo #initializing value of longitudinal mass\n",
"h=1.05*10**-34 #initializing value of plank constant.\n",
"Eg = 0.35 #initializing value of valence bandedge energy\n",
"ni =2*(((kbT*1.6*10**-19)/(2*(math.pi)*h**2))**(3/2))*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))\n",
"print\"ni =2*(kbT/(2*(math.pi)*h**2))**(3/2)*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))= \",\"{:.2e}\".format(ni),\"m**-3\"\n",
"kbT = 0.05175\n",
"print\"kbT = \",\"{:.2e}\".format(kbT),\"eV\" #initializing value of kbT at 600K\n",
"ni =2*(((kbT*1.6*10**-19)/(2*(math.pi)*h**2))**(3/2))*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))\n",
"print\"ni =2*(kbT/(2*(math.pi)*h**2))**(3/2)*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))= \",\"{:.2e}\".format(ni),\"m**-3\"\n",
"#Note: In the textbook wrong answer is given for intrinsic carrier concentration at 600K\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"ni =2*(kbT/(2*(math.pi)*h**2))**(3/2)*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))= 1.43e+44 m**-3\n",
"kbT = 5.17e-02 eV\n",
"ni =2*(kbT/(2*(math.pi)*h**2))**(3/2)*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))= 8.13e+45 m**-3\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.12:pg-75"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"mo = 9.1*10**-31 #initializing value of mass of electron\n",
"m_star=0.067*mo #initializing value of appropriate mass in the conduction band for GaAs\n",
"apsilen = 13.2*8.85*10**-14 #initializing value of relative permitivity for GaAs\n",
"apsilen_not = 8.85*10**-14 #initializing value of permitivity\n",
"ml = 0.98*mo #initializing value of longitudinal mass\n",
"mt = 0.2*mo #initializing value of transverse mass\n",
"m_sigma_star = (3)/((1.0/ml)+(2.0/mt))\n",
"print\"The conductivity mass for silicon is ,m_sigma_star = (3*mo)/((1/ml)+(2/mt))= \",\"{:.2e}\".format(m_sigma_star),\"Kg\"\n",
"print\"The shallow level energies are given by,Ed = Ec-(13.6(eV)*((m_star/mo)/(apsilen/apsilen_not)**2))\"\n",
"#Let Ec = 0 V and taking positive answer, \n",
"Ed_GaAs = (13.6*((m_star/mo)/(apsilen/apsilen_not)**2))\n",
"print\"The donor level energy in GaAs is ,Ed_GaAs = Ed= \",\"{:.2e}\".format(Ed_GaAs),\"eV\"\n",
"m_dot_GaAs=0.45*mo\n",
"print\"m_dot_GaAs=0.45*mo = \",\"{:.2e}\".format(m_dot_GaAs),\"kg\" #initializing value of heavy hole mass for GaAs\n",
"Ea_GaAs = (13.6*((m_dot_GaAs/mo)/(apsilen/apsilen_not)**2))\n",
"print\"The acceptor level energy in GaAs is ,Ea_GaAs = \",\"{:.2e}\".format(Ea_GaAs),\"eV\"\n",
"apsilen = 11.9*8.85*10**-14 #initializing value of relative permitivity for GaAs\n",
"m_dot_Si=0.5*mo #initializing value of heavy hole mass for GaAs\n",
"Ea_Si = (13.6*((m_dot_Si/mo)/(apsilen/apsilen_not)**2))\n",
"print\"The acceptor level energy in Si is ,Ea_Si = (13.6*((m_dot_Si/mo)/(apsilen/apsilen_not)**2))= \",\"{:.2e}\".format(Ea_Si),\"eV\"\n",
"Ed_Si = (13.6*((m_sigma_star/mo)/(apsilen/apsilen_not)**2))\n",
"print\"The donor level energy in Si is ,Ed_Si = (13.6*((m_sigma_star/mo)/(apsilen/apsilen_not)**2))= \",\"{:.2e}\".format(Ed_Si),\"eV\"\n",
"# Note : due to different precisions taken by me and the author ... my answer differ \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The conductivity mass for silicon is ,m_sigma_star = (3*mo)/((1/ml)+(2/mt))= 2.48e-31 Kg\n",
"The shallow level energies are given by,Ed = Ec-(13.6(eV)*((m_star/mo)/(apsilen/apsilen_not)**2))\n",
"The donor level energy in GaAs is ,Ed_GaAs = Ed= 5.23e-03 eV\n",
"m_dot_GaAs=0.45*mo = 4.10e-31 kg\n",
"The acceptor level energy in GaAs is ,Ea_GaAs = 3.51e-02 eV\n",
"The acceptor level energy in Si is ,Ea_Si = (13.6*((m_dot_Si/mo)/(apsilen/apsilen_not)**2))= 4.80e-02 eV\n",
"The donor level energy in Si is ,Ed_Si = (13.6*((m_sigma_star/mo)/(apsilen/apsilen_not)**2))= 2.61e-02 eV\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.13:pg-77"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"n = 10**17 #initializing value of free density of electron of GaAs\n",
"kBT=0.026 #initializing value of multiplication of boltzmann constant and temperature \n",
"Nc = 4.45*10**17 #initializing value of effective density of electron\n",
"#(we have assumed the valence band energy Ev=0eV as it is not provided in the book)\n",
"E1= kBT*((log(n/Nc)))\n",
"print\"Ef(B)=\",\"{:.1e}\".format(E1),\"eV\"\n",
"E2= kBT*((log(n/Nc))+(1/sqrt(8))*(n/Nc))\n",
"print\"E(J)=\",\"{:.1e}\".format(E2),\"eV\"\n",
"#for Boltzmann approximation the carrier concentration and fermi level are related as : Ef = Ec+E1\n",
"#for joyce dixon approximation the carrier concentration and fermi level are related as : Ef = Ec+E2\n",
"e=E1-E2\n",
"print\"The error produced by using boltzmann approx. is e=\"\"{:.2e}\".format(e),\"eV\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Ef(B)= -3.9e-02 eV\n",
"E(J)= -3.7e-02 eV\n",
"The error produced by using boltzmann approx. is e=-2.07e-03 eV\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.14:pg-77"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print\"In the Boltzmann approximation, the carrier density is simply\"\n",
"print\"n = Nc = 2.78*10**19 cm**-3\"\n",
"N=2.78*10**19 #initializing value of carrier density\n",
"#In joyce dixon approximation the carrier density is obtained from the solution of the equation\n",
"print\"Ef = 0 = kBT *(log(n/Nc)+(n/(sqrt8*Nc)))\"\n",
"#solving by trial and error , we get\n",
"#n/Nc= 0.76\n",
"n=0.76*N\n",
"print\"electron carrier concentration is n=0.76*Nc= \",\"{:.2e}\".format(n),\" cm**-3\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"In the Boltzmann approximation, the carrier density is simply\n",
"n = Nc = 2.78*10**19 cm**-3\n",
"Ef = 0 = kBT *(log(n/Nc)+(n/(sqrt8*Nc)))\n",
"electron carrier concentration is n=0.76*Nc= 2.11e+19 cm**-3\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.16:pg-80"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"Nc = 2.8*10**19 #initializing value of effective density of electron\n",
"Nd = 10**16 #initializing value of donor atom\n",
"Ec_minus_Ed = 45*10**-3 #initializing value of donor binding energy\n",
"kBT=0.026 #initializing value of multiplication of boltzmann constant and temperature \n",
"\n",
"#let fraction of ionised donor are represented as Fd = (nd/(n+nd))\n",
"Fd= (1/(((Nc/(2*Nd))*exp(-(Ec_minus_Ed/kBT)))+1))*100\n",
"print\"fraction of ionised donor is Fd=\",round(Fd,2),\"%\"\n",
"Nd = 10**18\n",
"print\"Nd = \",\"{:.2e}\".format(Nd),\"cm**-3\"\n",
"Fd= (1.0/(((Nc/(2*Nd))*exp(-(Ec_minus_Ed/kBT)))+1))*100\n",
"print\"fraction of ionised donor is Fd=\",round(Fd,2),\"%\"\n",
"# Note : due to different precisions taken by me and the author ... my answer differ \n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"fraction of ionised donor is Fd= 0.4 %\n",
"Nd = 1.00e+18 cm**-3\n",
"fraction of ionised donor is Fd= 28.74 %\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.17:pg-80"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"Nc_Si = 2.78*10**19 #initializing value of effective density of electron for silicon\n",
"Nc_GaAs = 4.45*10**17 #initializing value of effective density of electron for GaAs\n",
"print\"for joyce dixon approximation the carrier concentration and fermi level are related as : Ef -Ec = kBT*(log(n/Nc)+(n/(sqrt8*Nc))\"\n",
"print(\"using Ef-Ec = 3* kBT\") \n",
"print(\"solving above equation by hit and trial method for n/Nc,we get n/Nc = 4.4\") \n",
"n_by_Nc = 4.4\n",
"n_Si = n_by_Nc*Nc_Si\n",
"print\"carrier density for silicon is n=\"\"{:.2e}\".format(n_Si),\"cm**-3\"\n",
"n_GaAs = n_by_Nc*Nc_GaAs\n",
"print\"carrier density for GaAs is n=\",\"{:.2e}\".format(n_GaAs),\"cm**-3\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"for joyce dixon approximation the carrier concentration and fermi level are related as : Ef -Ec = kBT*(log(n/Nc)+(n/(sqrt8*Nc))\n",
"using Ef-Ec = 3* kBT\n",
"solving above equation by hit and trial method for n/Nc,we get n/Nc = 4.4\n",
"carrier density for silicon is n=1.22e+20 cm**-3\n",
"carrier density for GaAs is n= 1.96e+18 cm**-3\n"
]
}
],
"prompt_number": 12
}
],
"metadata": {}
}
]
}
|