1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
|
{
"metadata": {
"name": "",
"signature": "sha256:87ec2de187104d95ee2f6c0506d06458448c9c71e8a53382b631624a9ef50d23"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter1:ELECTRONS IN SOLIDS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1.1:pg-06"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"A1=27#initializing value of atomic mass of alluminium\n",
"AV = 6.023*10**23 #initializing value of avagadro number\n",
"N = 13 #initializing value of number of electrons of alluminium per atom\n",
"P1 = 2.7 #initializing value of density of alluminium\n",
"E1=AV*(N*P1/A1)\n",
"print\"Electrons density of alluminium,n(Al)= \",\"{:.2e}\".format(E1),\" cm**-3\"\n",
"A2=12 #initializing value of atomic mass of carbon\n",
"N1 = 6 #initializing value of number of electrons of carbon per atom\n",
"P2 = 3.515 #initializing value of density of carbon\n",
"E2=AV*(N1*P2/A2)\n",
"print\"Electrons density of carbon,n(C)= \",\"{:.3e}\".format(E2),\" cm**-3\"\n",
"A3=28 #initializing value of atomic mass of silicon\n",
"N2 = 14 #initializing value of number of electrons of silicon per atom\n",
"P3 = 2.33 #gcm**-3, initializing value of density of silicon\n",
"E3=AV*(N2*P3/A3)\n",
"print\"Electrons density of silicon,n(Si)=\",\"{:.2e}\".format(E3),\" cm**-3\"\n",
"#using Drudes approach\n",
"print\"using Drudes approach\"\n",
"Zc1=3 ##initializing value of valence electron of alluminium atom\n",
"E4=AV*(Zc1*P1/A1)\n",
"print\"Electrons density of alluminium,n(Al)=\",\"{:.1e}\".format(E4),\" cm**-3\"\n",
"Zc2=4 #initializing value of valence electron of carbon atom\n",
"E5=AV*(Zc2*P2/A2)\n",
"print\"Electrons density of carbon,n(C)=\",\"{:.2e}\".format(E5),\" cm**-3\"\n",
"Zc3=4 #initializing value of valence electron of silicon atom\n",
"E6=AV*(Zc3*P3/A3)\n",
"print\"Electrons density of silicon,n(Si)=\",\"{:.1e}\".format(E6),\" cm**-3\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Electrons density of alluminium,n(Al)= 7.83e+23 cm**-3\n",
"Electrons density of carbon,n(C)= 1.059e+24 cm**-3\n",
"Electrons density of silicon,n(Si)= 7.02e+23 cm**-3\n",
"using Drudes approach\n",
"Electrons density of alluminium,n(Al)= 1.8e+23 cm**-3\n",
"Electrons density of carbon,n(C)= 7.06e+23 cm**-3\n",
"Electrons density of silicon,n(Si)= 2.0e+23 cm**-3\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1.2:pg-13"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# silicon has diomond structure which is made up of FCC lattice \n",
"N=4.0 #initializing value of number of points per cube of volume\n",
"print\"N=4\"\n",
"A = 5.43*10**-8 #\"cm**-1\" #initializing value of lattice constant of silicon\n",
"D = 2.0 #initializing value of number of silicon atoms per lattice point\n",
"E1 = N*D/A**3\n",
"print\"number density of silicon,N(Si)= \",\"{:.3e}\".format(E1),\" atomscm**-3\"\n",
"#for gallium in GaAs there is 1 Ga atom and 1 As atom as per lattice point , it also has fcc structure\n",
"A1 = 5.65*10**-8 #initializing value of lattice constant of gallium\n",
"D1 = 1.0 #initializing value of number of gallium atoms per lattice point\n",
"E2 = N*D1/A1**3\n",
"print\"number density of gallium atoms,N(Ga)=\"\"{:.2e}\".format(E2),\" atomscm**-3\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"N=4\n",
"number density of silicon,N(Si)= 4.997e+22 atomscm**-3\n",
"number density of gallium atoms,N(Ga)=2.22e+22 atomscm**-3\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1.3:pg-14"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# silicon has diomond structure which is made up of FCC lattice \n",
"\n",
"N=4.0 #initializing value of number of points per cube of volume\n",
"A = 5.43*10**-8 #\"cm**-3\" #initializing value of lattice constant of silicon\n",
"D = 2.0 #initializing value of number of silicon atoms per lattice point\n",
"E1 = N*D/A**3\n",
"print\"number density of silicon,Nsi = \"\"{:.2e}\".format(E1),\" atomscm**-3\"\n",
"\n",
"#for gallium in GaAs there is 1 Ga atom and 1 As atom as per lattice point , it also has fcc structure\n",
"\n",
"A1 = 5.65*10**-8 #initializing value of lattice constant of gallium\n",
"D1 = 1.0 #initializing value of number of gallium atoms per lattice point\n",
"E2 = N*D1/A1**3\n",
"print\"number density of gallium atoms,NGa= \"\"{:.2e}\".format(E2),\" atomscm**-3\"\n",
"\n",
"# using above answer in following part\n",
"S1=10*10**-12 #initializing value of dimensions of silicon transistor\n",
"N1 = (E1*S1)\n",
"print\"number Si atom in silicon transistor,N(Si)= \",\"{:.2e}\".format(N1),\" atoms\"\n",
"S2 = 200*10*5*10**(-12) #\" cm**3\", #initializing value of dimensions of GaAs semiconductor laser\n",
"N2 = (E2*S2)\n",
"print\"number of Ga atom in GaAs semiconductor,N(Ga)= \",\"{:.2e}\".format(N2),\" atoms\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"number density of silicon,Nsi = 5.00e+22 atomscm**-3\n",
"number density of gallium atoms,NGa= 2.22e+22 atomscm**-3\n",
"number Si atom in silicon transistor,N(Si)= 5.00e+11 atoms\n",
"number of Ga atom in GaAs semiconductor,N(Ga)= 2.22e+14 atoms\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1.4:pg-15"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# In the (001) surface the top atoms are either Ga or As\n",
"#A square of area a**2 has 4 atoms on the edges of square shared by 4 other square and 1 atom in centre\n",
"\n",
"N=2.0 #initializing value of total number of atoms per square\n",
"a = 5.65*10**-8 #\"cm**-1\", #initializing value of lattice constant of gallium\n",
"SD = N/(a**2)\n",
"print\"surface density of Ga,N(Ga)= \",\"{:.3e}\".format(SD),\"cm**-2\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"surface density of Ga,N(Ga)= 6.265e+14 cm**-2\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1.5:pg-15"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"a = 5.65*10**-8 #initializing value of lattice constant of gallium\n",
"A = a/2\n",
"print\"monolayer distance in the (001) direction,(A(ml)=\",\"{:.3e}\".format(A),\" cm**-1\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"monolayer distance in the (001) direction,(A(ml)= 2.825e-08 cm**-1\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"\n",
"Ex1.6:pg-22"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"h=6.6*10**-34 #\"Js\", # plancks constant\n",
"c = 3*10**8 #\"m/s\", # velocity of light\n",
"E1 = 1.6*10**-19 #\"J\", #initializing value of energy of photon\n",
"L1 = h*c/E1\n",
"print\"wavelengh of photon,L(ph)= \"\"{:.2e}\".format(L1),\" m\"\n",
"E2 = 1.6*10**-19 #\"J\", #initializing value of energy of electron\n",
"mo = 9.1*10**-31 #\"kg\", #initializing value of mass of electron\n",
"L2 = h/sqrt(2*mo*E2)\n",
"print\"wavelengh of electron,L(e)= \"\"{:.2e}\".format(L2),\" m\"\n",
"m=1.0/1824 #initializing value of ratio of mass of electron to mass of neutron\n",
"L3 = L2*sqrt(m)\n",
"print\"wavelengh of neutron,L(n)=\"\"{:.2e}\".format(L3),\" m\"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"wavelengh of photon,L(ph)= 1.24e-06 m\n",
"wavelengh of electron,L(e)= 1.22e-09 m\n",
"wavelengh of neutron,L(n)=2.86e-11 m\n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"\n",
"Ex1.7:pg-25"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"h=1.05*10**-34 #initializing value of reduced plancks constant or dirac constant or h-bar\n",
"m = 9.1*10**-31 #initializing value of mass of electron\n",
"E = 0.1 #initializing value of energy of electron\n",
"N = (sqrt(2)*(m)**(3.0/2))/((math.pi)**2*(h)**3)\n",
"print\"density of states in 3D is ,N(E)= \",\"{:.2e}\".format(N),\"E**1/2 J**-1m**-3\"\n",
"\n",
"#Expressing E in eV and the density of states in commonly used units of eV**-1cm**-3\n",
"N1 = 6.8*10**21*sqrt(E)\n",
"print\"density of states in 3D is ,N(E)= \"\"{:.2e}\".format(N1),\"eV**-1cm**-3\"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"density of states in 3D is ,N(E)= 1.07e+56 E**1/2 J**-1m**-3\n",
"density of states in 3D is ,N(E)= 2.15e+21 eV**-1cm**-3\n"
]
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1.8:pg-25"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"h=1.05*10**-34 #initializing value of reduced plancks constant or dirac constant or h-bar\n",
"m = 9.1*10**-31 #initializing value of mass of electron\n",
"E = 2.0 #initializing value of energy of electron\n",
"#N = (sqrt(2)*(m)**(3.0/2))/((math.pi)**2*(h)**3)\n",
"#Expressing E in eV and the density of states in commonly used units of eV**-1cm**-3\n",
"N1 = 6.8*10**21*sqrt(E-2.0)\n",
"print\"density of states in 3D is ,N(E)= \",round(N1,2),\"eV**-1cm**-3\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"density of states in 3D is ,N(E)= 0.0 eV**-1cm**-3\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"\n",
"Ex1.9:pg-38"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"h=1.05*10**-34 #initializing value of reduced plancks constant or dirac constant or h-bar\n",
"m = 9.1*10**-31 #initializing value of mass of electron\n",
"n = 10**28 #initializing value of mass of electron\n",
"E = (3*(math.pi)**(2)*n)**(2/3)*(h**2/(2*m))\n",
"print\"The fermi energy at 0K is ,E[F]= \",\"{:.2e}\".format(E),\"J\"\n",
"Ef= E/(1.6*10**(-19))\n",
"print\"The fermi energy at 0K in eV is ,E[F] = \",\"{:.2e}\".format(Ef),\"eV\"\n",
"# Answer givenin the textbook is wrong"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The fermi energy at 0K is ,E[F]= 6.06e-39 J\n",
"The fermi energy at 0K in eV is ,E[F] = 3.79e-20 eV\n"
]
}
],
"prompt_number": 32
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1.10:pg-39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"print\"for temperature T1=77K\"\n",
"kBT1=0.0067 #initializing value of multiplication of boltzmann constant and temperature T1\n",
"n1 = 10**19 #initializing value of density of electron\n",
"Nc1 = 3.34*10**18#initializing value of effective density of electron\n",
"print\"Nc1 = 3.34*10**18 cm**-3\"\n",
"Ef1= kBT1*((log(n1/Nc1)))\n",
"print\"The fermi level at 77K (using boltzmann static) is ,Ef1(B)= \",\"{:.2e}\".format(Ef1),\"eV\"\n",
"Ef2= kBT1*((log(n1/Nc1))+(1.0/sqrt(8))*(n1/Nc1))\n",
"print\"The fermi level at 77K (using Joyce-Dixon static) is ,Ef1(J)= \",\"{:.2e}\".format(Ef2),\"eV\"\n",
"print\"for temperature T2=300K\"\n",
"kBT2=0.026 #initializing value of multiplication of boltzmann constant and temperature T2\n",
"Nc2 = 2.56*10**19 #initializing value of effective density of electron\n",
"print\"Nc2 = 2.56*10**19 cm**-3\"\n",
"Ef3= kBT2*((log(n1/Nc2)))\n",
"print\"The fermi level at 300K (using boltzmann static) is ,Ef2(B)= \",\"{:.2e}\".format(Ef3),\"eV\"\n",
"Ef4= kBT2*((log(n1/Nc2))+(1.0/sqrt(8))*(n1/Nc2))\n",
"print\"The fermi level at 300K (using Joyce-Dixon static) is ,Ef2(J)= \",\"{:.2e}\".format(Ef4),\"eV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"for temperature T1=77K\n",
"Nc1 = 3.34*10**18 cm**-3\n",
"The fermi level at 77K (using boltzmann static) is ,Ef1(B)= 7.35e-03 eV\n",
"The fermi level at 77K (using Joyce-Dixon static) is ,Ef1(J)= 1.44e-02 eV\n",
"for temperature T2=300K\n",
"Nc2 = 2.56*10**19 cm**-3\n",
"The fermi level at 300K (using boltzmann static) is ,Ef2(B)= -2.44e-02 eV\n",
"The fermi level at 300K (using Joyce-Dixon static) is ,Ef2(J)= -2.08e-02 eV\n"
]
}
],
"prompt_number": 35
}
],
"metadata": {}
}
]
}
|