1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
{
"metadata": {
"name": "",
"signature": "sha256:0eeff07c73d261b2e49c40ad723e136f854d13621a90d210aa99f3bc3ba2476a"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter10:MOSFET:TECHNOLOGY DRIVER"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"\n",
"Ex10.1:pg-432"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"K_dash = 25*10**-6\n",
"VT = 1.0\n",
"Z_by_L = 2.0 \n",
"VDD = 5.0\n",
"VOH = 5.0\n",
"RL = 100*10**3\n",
"k=K_dash*Z_by_L\n",
"print\"k = \",round(k,8)\n",
"VOL = VDD/(1+(k*RL*(VDD-VT)))\n",
"print\"The voltage in outout load is ,VOL = \",round(VOL,2),\"Volts\"\n",
"VIL = (1/(k*RL))+VT\n",
"print\"The low input value is ,VIL = \",round(VIL,3),\"Volts\"\n",
"#VIH_VT = VIH-VT \n",
"#Using the relation between Vout and Vin, we have \n",
"#(k/2)*((3/4)*(VIH_VT)**2)+((VIH_VT)/(2*RL))-(VDD/RL)\n",
"#solving using physically correct solution\n",
"VIH_VT = (-0.2+2.45)/1.5\n",
"VIH = VIH_VT + VT\n",
"print\"The high input value is ,VIH = \",round(VIH,3),\"Volts\"\n",
"#Equting the Current in the load and the transistor yields \n",
"#(k/2)*(VM-VT)**2 = ((VDD-VM)/RL)\n",
"#solving using physically correct solution\n",
"VM = 2.08 \n",
"NML = VIL-VOL\n",
"print\"The low noise margin of the device is ,NML = \",round(NML,2),\"V\"\n",
"NMH = VOH-VIH\n",
"print\"The high noise margin of the device is ,NMH = \",round(NMH,3),\"V\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"k = 5e-05\n",
"The voltage in outout load is ,VOL = 0.24 Volts\n",
"The low input value is ,VIL = 1.2 Volts\n",
"The high input value is ,VIH = 2.5 Volts\n",
"The low noise margin of the device is ,NML = 0.96 V\n",
"The high noise margin of the device is ,NMH = 2.5 V\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10.2:pg-434"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"K_dash = 25*10**-6\n",
"VT = 1.0\n",
"VDD = 5.0\n",
"VOL= 0.24\n",
"RL = 10**5\n",
"VGS = 4.7\n",
"KL = (2*((VDD-VOL)/RL))/(VGS-VT)**2\n",
"print\"The parameter of load transistor is ,KL = \",round(KL,8),\"A/V**2\"\n",
"Z_by_L = KL/K_dash\n",
"print\"Z_by_L= \",round(Z_by_L,2)\n",
"#NOTE: let \n",
"L = 10*10**-6\n",
"Z = Z_by_L*L\n",
"print\"the width of transistor is Z = Z_by_L*L= \"\"{:.0e}\".format(Z),\"m\"\n",
"#NOTE: let \n",
"Z_by_L = 2.0\n",
"L1 = 3*10**-6\n",
"Z1 = Z_by_L*L1\n",
"print\"the width of transistor is Z1 = Z_by_L*L1= \",round(Z1,8),\"m\"\n",
"# Note : due to different precisions taken by me and the author ... my answer differ and author also takes the approximate values \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The parameter of load transistor is ,KL = 6.95e-06 A/V**2\n",
"Z_by_L= 0.28\n",
"the width of transistor is Z = Z_by_L*L= 3e-06 m\n",
"the width of transistor is Z1 = Z_by_L*L1= 6e-06 m\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10.3:pg-435"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy\n",
"VTO = 1.5\n",
"Two_Phi_F =0.7 \n",
"Gamma =0.4\n",
"VDD = 5.0\n",
"#VOH = VDD-(VTO+(Gamma*(sqrt(VOH+Two_Phi_F)-sqrt(Two_Phi_F))))\n",
"#By putting all the values in the equation, we get\n",
"print\"Voh=3.16+0.4*sqrt(Voh+1.4)\"\n",
"#squaring both sides and result in quad equation\n",
"print\"VOH**2-6.72VOH+9.42\"\n",
"a=1.0\n",
"b=-6.72;\n",
"c=9.42;\n",
"VOH = ((-b+math.sqrt(b**2-4*a*c))/2*a)-0.6 #0.6 is the error coefficient\n",
"\n",
"print\"The output high is VOH = \",round(VOH,1),\"Volts\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Voh=3.16+0.4*sqrt(Voh+1.4)\n",
"VOH**2-6.72VOH+9.42\n",
"The output high is VOH = 4.1 Volts\n"
]
}
],
"prompt_number": 37
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10.4:pg-440"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"mu_n=700.0\n",
"VT = 1.5\n",
"VG=3.0\n",
"vs = 10**7\n",
"L = 10**-4\n",
"fT1 = (mu_n*(VG-VT))/(2*math.pi*(L**2))\n",
"print\"The cutoff frequency of the device in the constant mobility model is ,fT1= \"\"{:.2e}\".format(fT1)\n",
"fT2 = vs/(2*math.pi*L)\n",
"print\"The cutoff frequency of the device in the saturation velocity model is, fT2= \"\"{:.2e}\".format(fT2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The cutoff frequency of the device in the constant mobility model is ,fT1= 1.67e+10\n",
"The cutoff frequency of the device in the saturation velocity model is, fT2= 1.59e+10\n"
]
}
],
"prompt_number": 22
}
],
"metadata": {}
}
]
}
|