summaryrefslogtreecommitdiff
path: root/Satellite_Communications/Chapter_9.ipynb
blob: 2c093f328cca73048f43ab3b35c7c6bb9262eb81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
{
 "metadata": {
  "name": "",
  "signature": "sha256:784ed0940f5ca0d7641a379ee4884ada589406f7ce20917d271026274ac607a6"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 9: Analog Signals"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.1, Page 235"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable Declaration\n",
      "\n",
      "Bs=4.2  #Signal Bandwidth(MHz)\n",
      "delf=2.56  #Deviation Ratio\n",
      "\n",
      "#Calculation\n",
      "\n",
      "delF=Bs*delf  #Peak Deviation(MHz)\n",
      "BIF=2*(delF+Bs)  #Signal Bandwidth(MHz)\n",
      "BIF=round(BIF,1)\n",
      "#Results\n",
      "\n",
      "print \"The peak deviation is:\" , delF,\"MHz\"\n",
      "print \"Signal Bandwidth is\" , BIF,\"MHz\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The peak deviation is: 10.752 MHz\n",
        "Signal Bandwidth is 29.9 MHz\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.2, Page 236"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable Declaration\n",
      "\n",
      "delF=200 #Peak Deviation(kHz)\n",
      "f=0.8    #Test tone frequency (kHz)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "m=delF/f  #Modualtion index\n",
      "B=2*(delF+f)  #Bandwidth of the signal(kHz)\n",
      "\n",
      "#Results\n",
      "\n",
      "print \"The modulation index is\" , m\n",
      "print \"Bandwidth of the signal is\", B,\"kHz\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The modulation index is 250.0\n",
        "Bandwidth of the signal is 401.6 kHz\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.3, Page 236"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable Declaration\n",
      "\n",
      "Bs1=4.2  #Signal Bandwidth(MHz) of Example 9.1\n",
      "delf=2.56  #Deviation Ratio of Example 9.1\n",
      "\n",
      "delF2=200 #Peak Deviation(kHz) of Example 9.2\n",
      "Bs2=0.8    #Test tone frequency (kHz) of Example 9.2\n",
      "\n",
      "#Calculation\n",
      "\n",
      "delF1=Bs1*delf  #Peak Deviation(MHz) of Example 9.1\n",
      "\n",
      "BIF1=2*(delF1+2*Bs1)  #Signal Bandwidth(MHz) of Example 9.1 according to Carson's rule\n",
      "BIF1=round(BIF1,1)\n",
      "BIF2=2*(delF2+2*Bs2)  #Signal Bandwidth(kHz) of Example 9.2 according to Carson's rule.\n",
      "\n",
      "#Results\n",
      "\n",
      "print \"Signal Bandwidth of Example 9.1 by Carson's rule is\",BIF1,\"MHz\"\n",
      "\n",
      "print \"Signal Bandwidth of Example 9.2 by Carson's rule is\",BIF2,\"kHz\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Signal Bandwidth of Example 9.1 by Carson's rule is 38.3 MHz\n",
        "Signal Bandwidth of Example 9.2 by Carson's rule is 403.2 kHz\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.4, Page 241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Variable Declaration\n",
      "\n",
      "delf=5 #Deviation frequency (kHz)\n",
      "Bs=1   #Test Tone Frequency (kHz)\n",
      "CNR=30  #Carrier to noise ration(dB)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "m=delf/Bs  #Modulation Index\n",
      "Gp=3*(m**2)*(m+1)  #Processing gain for sinusoidal modulation\n",
      "Gp=10*math.log10(Gp) #Converting Gp into dB\n",
      "SNR=CNR+Gp\n",
      "\n",
      "Gp=round(Gp,1)\n",
      "SNR=round(SNR,1)\n",
      "\n",
      "#Results\n",
      "\n",
      "print \"The receiver processing gain is\",Gp,\"dB\"\n",
      "print \"The Signal to noise ratio is\", SNR,\"dB\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The receiver processing gain is 26.5 dB\n",
        "The Signal to noise ratio is 56.5 dB\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.5, Page 245"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Variable Declaration\n",
      "\n",
      "n=24  #Number of channels\n",
      "g=13.57  #Peak/rms factor(dB)\n",
      "b=3.1  #Channel Bandwidth(kHz)\n",
      "P=4     #Emphasis improvement (dB)\n",
      "W=2.5   #Noise weighting improvement(dB)\n",
      "CNR=25  #Carrier to noise ratio (dB)\n",
      "delFrms=35  #rms value of Peak Deviation(kHz)\n",
      "fm=108    #Baseband frequency (kHz)\n",
      "#Calculation\n",
      " \n",
      "L=10**((-1+4*math.log10(n))/20)\n",
      "g=10**(g/20)  #Converting process gain to ratio\n",
      "delF=g*delFrms*L  #Peak Deviation(Hz)\n",
      "BIF=2*(delF+fm)   #Signal Bandwidth(kHz) by Carson's rule\n",
      "Gp=(BIF/b)*((delFrms/float(fm))**2)  #Processing Gain\n",
      "Gp=10*math.log10(Gp)  #Converting Gp to dB\n",
      "SNR=CNR+Gp+P+W  #Signal to noise ratio for top channel in 24-channel FDM basseband signal\n",
      "SNR=round(SNR,1)\n",
      "#Results\n",
      "\n",
      "print \"Signal to noise ratio for top channel in 24-channel FDM Baseband signal is\", SNR,\"dB\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Signal to noise ratio for top channel in 24-channel FDM Baseband signal is 45.7 dB\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.6, Page 246"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Variable Declaration\n",
      "\n",
      "delF=9  #Peak Deviation (MHz) \n",
      "fm=4.2  #Baseband frequency(MHz)\n",
      "SNR=62  #Signal to noise ration(dB)\n",
      "M=11.8  #Noise weighing(P)+emphasis improvement(W)-implementation margin(IMP)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "D=delF/fm  #Modulation Index\n",
      "GPV=12*(D**2)*(D+1)  #Processing Gain for TV\n",
      "GPV=10*math.log10(GPV)  #Converting GPV into dB\n",
      "CNR=SNR-GPV-M   #carrier to noise ratio(dB)\n",
      "CNR=round(CNR,1)\n",
      "#Results\n",
      "\n",
      "print \"The Carrier to noise ratio required at the input of FM detector is\",CNR,\"dB\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Carrier to noise ratio required at the input of FM detector is 27.8 dB\n"
       ]
      }
     ],
     "prompt_number": 6
    }
   ],
   "metadata": {}
  }
 ]
}