1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
{
"metadata": {
"name": "",
"signature": "sha256:15f18d4eac7b181ba51c6696eba06fa436baa89f07a517b2b2096748a0e3b407"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 13: Interference"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.1, Page 350"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"EIRP1=34 #desired carrier EIRP from satellite(dB)\n",
"G1=44 # ground station receiving antenna gain(dB)\n",
"G2=24.47 #Gain in desired direction(dB)\n",
"EIRP2=34 #EIRP by interfering satellite(dB)\n",
"PD=4 #Polarization discrimination(dB)\n",
"\n",
"#Calculation\n",
"\n",
"CIR=EIRP1-EIRP2+G1-G2+PD #Carrier to Interference ratio(dB)\n",
"\n",
"#Result\n",
"\n",
"print \"The Carrier to interfernce ratio at the ground receiving antenna is\",CIR,\"dB\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Carrier to interfernce ratio at the ground receiving antenna is 23.53 dB\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.2, Page 350"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Decalration\n",
"\n",
"PA=24 #Transmit power by station A(dBW)\n",
"G1=54 #Antenna Gain(dB)\n",
"PC=30 #Transmit power by station C(dBW)\n",
"G2=24.47#off-axis gain in the S1 direction(dB)\n",
"PD=4 #Polarization discrimination(dB)\n",
"\n",
"#Calculation\n",
"\n",
"CIR=PA-PC+G1-G2+PD #Carrier to Interference ratio(dB)\n",
"\n",
"#Result\n",
"\n",
"print \"The Carrier to interfernce ratio on uplink is\",CIR,\"dB\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Carrier to interfernce ratio on uplink is 27.53 dB\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.3, Page 351"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#Variable Declaration\n",
"\n",
"CIR1=27.53 #Carrier to interference ratio from Example 13.1(dB)\n",
"CIR2=23.53 #Carrier to interference ratio from Example 13.2(dB)\n",
"\n",
"#Calculation\n",
"\n",
"ICRu=10**(-CIR1/10) #Interferece to carrier ratio for uplink\n",
"ICRd=10**(-CIR2/10) #Interferece to carrier ratio for downlink\n",
"\n",
"ICRant=ICRu+ICRd #Overall Interferece to carrier ratio\n",
"CIRant=-10*math.log10(ICRant)#Overall Carrier to interference ratio (dB)\n",
"CIRant=round(CIRant,2)\n",
"#Result\n",
"\n",
"print \"The overall carrier to interference ratio is\",CIRant,\"dB\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The overall carrier to interference ratio is 22.07 dB\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.4, Page 352"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#Variable Declaration\n",
"\n",
"SSi=4 #Initial satellite spacing(degrees)\n",
"SSl=2 #Later Satellite spacing(degrees)\n",
"\n",
"#Calculation\n",
"\n",
"IIR=(29-25*math.log10(SSl))-(29-25*math.log10(SSi)) #Increase in Interference(dB)\n",
"IIR=round(IIR,1)\n",
"#Result\n",
"\n",
"print \"The degradation in downlink C/I is\",IIR,\"dB\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The degradation in downlink C/I is 7.5 dB\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.5, Page 356"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"\n",
"f=4.2 #modualating frequency(MHz)\n",
"m=2.571 #Modulation index\n",
"QIF1=4.2 #Quality Impairment factor(a)\n",
"QIF2=4.5 #Quality Impairment factor(b)\n",
"\n",
"#Calculation\n",
"\n",
"Dv=2*m*f #Peak to peak deviation(MHz)\n",
"\n",
"PR1=12.5-20*math.log10(Dv/12)-QIF1+1.1*QIF1**2 #Protection ratio for case(a)\n",
"PR1=round(PR1,1)\n",
"PR2=12.5-20*math.log10(Dv/12)-QIF2+1.1*QIF2**2 #Protection ratio for case(b)\n",
"PR2=round(PR2,1)\n",
"#Results\n",
"\n",
"print \"The protection ratio for quality impairment factor of 4.2 is\",PR1,\"dB\"\n",
"\n",
"print \"The protection ratio for quality impairment factor of 4.5 is\",PR2,\"dB\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The protection ratio for quality impairment factor of 4.2 is 22.6 dB\n",
"The protection ratio for quality impairment factor of 4.5 is 25.2 dB\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.6, Page 363"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Decalration\n",
"LU=200 #Uplink propogation loss(dB)\n",
"LD=196 #Downlink propogation loss(dB)\n",
"GE=25 #Receiving gain of earth station(dB)\n",
"GE1=25 #Transmit gain of E1 in the direction of S(dB)\n",
"GS=9 #receive gain of S in the direction of E1(dB)\n",
"GS1=9 #Transmit gain of satellite S1 in the direction of E(dB)\n",
"GTE=48 #Transmit gain of E(dB)\n",
"GRE=48 #Receive gain of E(dB)\n",
"GRS=19 #Receive gain of S(dB)\n",
"GTS=19 #Transmit gain of S(dB)\n",
"US=-60 #Maximum power spectral density(dBJ)\n",
"US1=1 #Maximum power spectral density(uJ)\n",
"UE1=10 #Maximum power spectral density transmitted by earth station(uJ)\n",
"UE=-50 #Maximum power spectral density transmitted by earth station(dBJ)\n",
"k=-228.6\n",
"#Calculation\n",
"\n",
"URS=UE+GTE+GRS-LU#Received power spectral density at satellite S(dB)\n",
"URE=US+GTS+GRE-LD#Received power spectral density at satellite E(dB)\n",
"y=URE-URS #Transmission gain for network R(dB)\n",
"\n",
"I1=US+GS1+GE-LD #Interference received by earth station(dB)\n",
"I2=UE+GE1+GS-LU #Uplink Interference(dB)\n",
"\n",
"delTE=I1-k #Earth station receiver input(dBK)\n",
"delTE=10**(delTE/float(10)) #Earth station receiver input(K)\n",
"delTS=I2-k #Noise temperature at satellite receiver input(dBK)\n",
"\n",
"delTSE=y+delTS #Noise Temperature rise(dBKelvin)\n",
"delTSE=10**(delTSE/10) #Noise Temperature rise(Kelvin)\n",
"delT=delTSE+delTE #Equivalent noise temperature rise\n",
"delT=round(delT,2)\n",
"\n",
"print URE,URS\n",
"#Results\n",
"\n",
"print \"The transmission gain is\",y,\"dB\"\n",
"print \"The interference levels I1 an I2 are\",I1,I2,\"dBJ respectively\"\n",
"print \"The equivalent temperature rise overall is\",delT,\"Kelvin\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"-189 -183\n",
"The transmission gain is -6 dB\n",
"The interference levels I1 an I2 are -222 -216 dBJ respectively\n",
"The equivalent temperature rise overall is 9.14 Kelvin\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|