summaryrefslogtreecommitdiff
path: root/Satellite_Communication_by_Anil_K.maini_Varsha_Agrawal/chapter_3.ipynb
blob: b87a50b4133fd4d8762d794e5eb10e2efbb93ed9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
{
 "metadata": {
  "name": "",
  "signature": "sha256:eb32c126a333b2cfa51753626f865ad3fb2b120400bc606b82fb97538f18ae74"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 3: Satellite Launch and In-Orbit Operations"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.1, page no-72"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Variable Declaration\n",
      "Az=85      # Azimuth angle of injection point\n",
      "l=5.2      # latitude of launch site\n",
      "\n",
      "\n",
      "#Calculation\n",
      "cosi=math.sin(Az*math.pi/180)*math.cos(l*math.pi/180)\n",
      "i=math.acos(cosi)\n",
      "i=i*180.0/math.pi\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"Inclination angle attained, i=%.1f\u00b0\"%i)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Inclination angle attained, i=7.2\u00b0\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.2, page no-73"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Variable Declaration\n",
      "delta_i=7     #orbital plane inclination\n",
      "V=3000        #velocity of satellite in circularized orbit\n",
      "\n",
      "\n",
      "#Calculation\n",
      "vp=2*V*math.sin(delta_i*math.pi/(2*180))\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"Velocity thrust to make the inclination 0\u00b0 = %.0f m/s\"%vp)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Velocity thrust to make the inclination 0\u00b0 = 366 m/s\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.3, page no-73"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Declaration\n",
      "mu=39.8*10**13          # Nm^2/kg\n",
      "P=7000.0*10**3          # Perigee distance in m\n",
      "e=0.69                  # eccentricity of eliptical orbit\n",
      "w=60.0/2                # angle made by line joing centre of earth and perigee with the line of nodes\n",
      "\n",
      "\n",
      "#Calculation\n",
      "k=(e/math.sqrt(1+e))\n",
      "k=math.floor(k*100)/100\n",
      "v=2*(math.sqrt(mu/P))*k*math.sin(w*math.pi/180.0)\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"The velocity thrust required to rotate the perigee point\\n by desired amount is given by, v=%.1f m/s = %.3fkm/s\"%(v,v/1000.0))\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The velocity thrust required to rotate the perigee point\n",
        " by desired amount is given by, v=3996.4 m/s = 3.996km/s\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.4, page no-74"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Variable Declaration\n",
      "A=15000*10**3            #Original apogee distance\n",
      "A1=25000*10**3           # Raised opogee distance\n",
      "P=7000*10**3             # Perigee Distance\n",
      "mu=39.8*10**13           #Nm**2/kg\n",
      "\n",
      "\n",
      "#Calculation\n",
      "A_d=A1-A\n",
      "v=math.sqrt((2*mu/P)-(2*mu/(A+P)))\n",
      "del_v=A_d*mu/(v*(A+P)**2)\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"required Thrust velocity Delta_v = %.1f m/s\"%del_v)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "required Thrust velocity Delta_v = 933.9 m/s\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.5, page no-75"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Variable Declaration\n",
      "A=15000.0*10**3            # Original apogee distance\n",
      "A1=7000.0*10**3            # Raised opogee distance\n",
      "P=7000.0*10**3             # Perigee Distance\n",
      "mu=39.8*10**13             # Nm^2/kg\n",
      "\n",
      "\n",
      "#Calculation\n",
      "A_d=A-A1\n",
      "v=math.sqrt((2*mu/P)-(2*mu/(A+P)))\n",
      "del_v=A_d*mu/(v*(A+P)**2)\n",
      "\n",
      "#Result\n",
      "print(\"required Thrust velocity Delta_v = %.1f m/s\"%del_v)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "required Thrust velocity Delta_v = 747.1 m/s\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.6, page no-76"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable Declaration\n",
      "A=15000.0*10**3            # Original apogee distance\n",
      "A1=16000.0*10**3           # Raised opogee distance\n",
      "P=7000.0*10**3             # Perigee Distance\n",
      "mu=39.8*10**13           # Nm**2/kg\n",
      "\n",
      "\n",
      "#Calculation\n",
      "A_d=A1-A\n",
      "v=math.sqrt((2*mu/P)-(2*mu/(A+P)))\n",
      "v=v*P/A\n",
      "del_v=A_d*mu/(v*(A+P)**2)\n",
      "\n",
      "#Result\n",
      "print(\"required Thrust velocity Delta_v = %.1f m/s\"%del_v)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "required Thrust velocity Delta_v = 200.1 m/s\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.7, page no-77"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Variable Declaration\n",
      "R=6378.0*10**3              # Radius of earth\n",
      "mu=39.8*10**13              # Nm**2/kg\n",
      "r1=500.0*10**3              # original orbit from earths surface\n",
      "r2=800.0*10**3              # orbit to be raised to thisdistance\n",
      "\n",
      "\n",
      "#Calculation\n",
      "R1=R+r1\n",
      "R2=R+r2\n",
      "delta_v=math.sqrt(2*mu*R2/(R1*(R1+R2)))-math.sqrt(mu/R1)\n",
      "delta_v_dash=math.sqrt(mu/R2)-math.sqrt(2*mu*R1/(R2*(R1+R2)))\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"Two thrusts to be applied are,\\n Delta_v = %.2f m/s \\n Delta_v_dash = %.2f m/s\"%(delta_v,delta_v_dash))\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Two thrusts to be applied are,\n",
        " Delta_v = 80.75 m/s \n",
        " Delta_v_dash = 79.89 m/s\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.8, page no-97"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Variable Declaration\n",
      "H=36000.0       # Height of geostationary satellite from the surface of earth\n",
      "R=6370.0        # Radius of earth in km\n",
      "\n",
      "\n",
      "#Calculation\n",
      "k=math.acos(R/(R+H))\n",
      "#k=k*180/%pi\n",
      "k=math.sin(k)\n",
      "k=math.ceil(k*1000)/1000\n",
      "d=2*(H+R)*k\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"Maximum line-of-sight distance is %.2f km\"%d)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum line-of-sight distance is 83807.86 km\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.9, page no-98"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Variable Declaration\n",
      "H=36000.0       # Height of geostationary satellite from the surface of earth\n",
      "R=6370.0        # Radius of earth in km\n",
      "theta=20.0      # angular separation between two satellites\n",
      "\n",
      "\n",
      "#Calculation\n",
      "D=(H+R)\n",
      "k=math.ceil(math.cos(theta*math.pi/180.0)*100)/100\n",
      "d=math.sqrt(2*D**2*(1-k))\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"The line-of-sight distance is %.4f km\"%d)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The line-of-sight distance is 14677.3985 km\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.10, page no-98"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Declaration\n",
      "\n",
      "theta=37+74        # angular separation between two satellites\n",
      "D=42164.0          # circular equilateral geostationary orbit in km\n",
      "\n",
      "\n",
      "#Calculation\n",
      "k=math.cos(math.pi*theta/180.0)\n",
      "#printf(\"%f\\n\",k)\n",
      "k=-0.357952\n",
      "d=math.sqrt(2*D**2*(1-k))\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"Inter-satellite distance is %.2f km\"%d)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Inter-satellite distance is 69486.27 km\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.11, page no-99"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "theta_l=30.0          # earth station's location 30\u00b0W longitude\n",
      "theta_s=50.0          # satellite's location 50\u00b0W longitude\n",
      "theta_L=60.0          # earth station's location 60\u00b0N latitude\n",
      "r=42164.0             # orbital radius of the satellite in km\n",
      "R=6378.0              # Earth's radius in km\n",
      "\n",
      "A_dash=math.atan((math.tan(math.pi*(theta_s-theta_l)/180.0))/math.sin(math.pi*60/180.0))\n",
      "A_dash=A_dash*180/math.pi\n",
      "A=180+A_dash         #Azimuth angle\n",
      "\n",
      "x=(180/math.pi)*math.acos(math.cos(math.pi*(theta_s-theta_l)/180.0)*math.cos(math.pi*theta_L/180))\n",
      "y=r-math.ceil(R*(math.cos(math.pi*(theta_s-theta_l)/180.0)*math.cos(math.pi*theta_L/180)))\n",
      "z=R*math.sin(math.pi*x/180)\n",
      "E=(math.atan(y/z)*180/math.pi)-x\n",
      "print(\"Azimuth  angle =%.1f\u00b0\\n Elevation angle =%.1f\u00b0\"%(A,E))\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Azimuth  angle =202.8\u00b0\n",
        " Elevation angle =19.8\u00b0\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.12, page no-100"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Variable Declaration\n",
      "theta_l=60.0           #earth station's location 60\u00b0W longitude\n",
      "theta_s=105.0          #satellite's location 105\u00b0W longitude\n",
      "theta_L=30.0           #earth station's location 30\u00b0N latitude\n",
      "\n",
      "theta_l1=90.0           #earth station's location 90\u00b0W longitude\n",
      "theta_s1=105.0          #satellite's location 105\u00b0W longitude\n",
      "theta_L1=45.0           #earth station's location 45\u00b0N latitude\n",
      "\n",
      "c=3*10**8             # speed of light\n",
      "r=42164.0             # orbital radius of the satellite in km\n",
      "R=6378.0              # Earth's radius in km\n",
      "\n",
      "\n",
      "#Calculation\n",
      "\n",
      "x=(180/math.pi)*math.acos(math.cos(math.pi*(theta_s-theta_l)/180)*math.cos(math.pi*theta_L/180))\n",
      "y=r-math.ceil(R*(math.cos(math.pi*(theta_s-theta_l)/180)*math.cos(math.pi*theta_L/180)))\n",
      "z=R*math.sin(math.pi*x/180)\n",
      "E=(math.atan(y/z)*180/math.pi)-x\n",
      "\n",
      "x1=(180/math.pi)*math.acos(math.cos(math.pi*(theta_s1-theta_l1)/180)*math.cos(math.pi*theta_L1/180))\n",
      "y1=r-math.ceil(R*(math.cos(math.pi*(theta_s1-theta_l1)/180)*math.cos(math.pi*theta_L1/180)))\n",
      "z1=R*math.sin(math.pi*x1/180)\n",
      "E1=(math.atan(y1/z1)*180/math.pi)-x1\n",
      "E1=math.floor(E1)\n",
      "\n",
      "#calculation of slant range dx\n",
      "k=(R/r)*math.cos(math.pi*E/180)\n",
      "k=(180/math.pi)*math.asin(k)\n",
      "k=k+E\n",
      "k=math.sin(math.pi*k/180)\n",
      "k=math.ceil(k*1000)/1000\n",
      "#k=k+E\n",
      "#k=sin(k)\n",
      "dx=(R)**2+(r)**2-(2*r*R*k)\n",
      "dx=math.sqrt(dx)\n",
      "\n",
      "\n",
      "#calculation of slant range dy\n",
      "k1=(R/r)*math.cos(math.pi*E1/180)\n",
      "k1=(180/math.pi)*math.asin(k1)\n",
      "k1=k1+E1\n",
      "k1=math.floor(k1)\n",
      "k1=math.sin(math.pi*k1/180)\n",
      "k1=math.ceil(k1*1000)/1000\n",
      "dy=(R)**2+(r)**2-(2*r*R*k1)\n",
      "dy=math.sqrt(dy)\n",
      "\n",
      "tr=dy+dx\n",
      "delay=tr*10**6/c\n",
      "x=50\n",
      "td=delay+x\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"Elevation angle, Ex =%.1f\u00b0\"%E)\n",
      "print(\"\\n Elevation angle, Ey =%.1f\u00b0\"%math.floor(E1))\n",
      "print(\"\\n Slant range dx of the earth station X is dx=%.2fkm\"%dx)\n",
      "print(\"\\n Slant range dy of the earth station Y is dy=%.1fkm\"%dy)\n",
      "print(\"\\n Therefore, total range to be covered is %.2fkm\"%tr)\n",
      "print(\"\\n propagation delay=%.2fms\"%delay)\n",
      "print(\"\\n\\n Time required too transmit 500 kbs of information at \\n a transmisssion speed of 10Mbps is given by 500000/10^7=%.0fms\"%(500000000.0/10**7))\n",
      "print(\"\\n\\n Total Delay= %.2fms\"%td)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Elevation angle, Ex =30.3\u00b0\n",
        "\n",
        " Elevation angle, Ey =36.0\u00b0\n",
        "\n",
        " Slant range dx of the earth station X is dx=38584.76km\n",
        "\n",
        " Slant range dy of the earth station Y is dy=38100.8km\n",
        "\n",
        " Therefore, total range to be covered is 76685.57km\n",
        "\n",
        " propagation delay=255.62ms\n",
        "\n",
        "\n",
        " Time required too transmit 500 kbs of information at \n",
        " a transmisssion speed of 10Mbps is given by 500000/10^7=50ms\n",
        "\n",
        "\n",
        " Total Delay= 305.62ms\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.13, page no-102"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Variable Declaration\n",
      "da=38000.0                # slant range of satellite A\n",
      "db=36000.0                # slant range of satellite B\n",
      "beeta=60.0                # difference between longitudes of two satellites\n",
      "R=42164.0                 # radius of the orbit of satellites\n",
      "\n",
      "\n",
      "#Calculation\n",
      "theta=(da**2+db**2-2*(R**2)*(1-math.cos(math.pi*beeta/180)))/(2*da*db)\n",
      "theta=(180/math.pi)*math.acos(theta)\n",
      "d=math.sqrt(2*(R**2)*(1-math.cos(math.pi*beeta/180)))\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"Angular spacing between two satellites viewed by earth station is,\\n theta= %.1f\u00b0\"%theta)\n",
      "print(\"\\nInter-satellite distance , d=%.0fkm\"%d)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Angular spacing between two satellites viewed by earth station is,\n",
        " theta= 69.4\u00b0\n",
        "\n",
        "Inter-satellite distance , d=42164km\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.14, page no-107"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Variable Declaration\n",
      "r=42164.0             # orbital radius of the satellite in km\n",
      "R=6378.0              # Earth's radius in km\n",
      "\n",
      "#refer to Figure 3.53\n",
      "\n",
      "#Calculation\n",
      "\n",
      "#for E=0\u00b0\n",
      "alfa=math.asin(R/r)*(180/math.pi)\n",
      "alfa=math.floor(alfa*10)/10\n",
      "theta=90-alfa\n",
      "#in the right angle triangle OAC,\n",
      "k=math.sin(math.pi*alfa/180)\n",
      "k=math.floor(k*1000)/1000\n",
      "oc=R*k\n",
      "oc=math.ceil(oc*10)/10\n",
      "A=2*math.pi*R*(R-oc)\n",
      "\n",
      "\n",
      "#for E=10\u00b0\n",
      "E=10\n",
      "alfa1=math.asin((R/r)*math.cos(math.pi*E/180))*(180/math.pi)\n",
      "#alfa1=ceil(alfa1*100)/100\n",
      "theta1=90-alfa1-E\n",
      "#in the right angle triangle OAC,\n",
      "k1=math.sin(math.pi*(alfa1+E)/180)\n",
      "k1=math.floor(k1*1000)/1000\n",
      "oc1=R*k1\n",
      "oc1=math.floor(oc1*10)/10\n",
      "A1=2*math.pi*R*(R-oc1)\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"for E=0\u00b0,\\n covered surface area is %.1f km^2\"%A)\n",
      "print(\"\\n\\n for E=10\u00b0,\\n covered surface area is %.1f km^2\"%A1)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "for E=0\u00b0,\n",
        " covered surface area is 216997546.7 km^2\n",
        "\n",
        "\n",
        " for E=10\u00b0,\n",
        " covered surface area is 174314563.3 km^2\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.15, page no-108"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "theta=30               #satellite inclination to the equitorial plan\n",
      "\n",
      "\n",
      "print(\"Extreme Northern latitude covered = %.0f\u00b0 N\"%theta)\n",
      "print(\"\\n Extreme Southern latitude covered = %.0f\u00b0 S\"%theta)\n",
      "print(\"\\n\\n In fact, the ground track would sweep\\n all latitudes between %d\u00b0N and %d\u00b0S\"%(theta,theta))\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Extreme Northern latitude covered = 30\u00b0 N\n",
        "\n",
        " Extreme Southern latitude covered = 30\u00b0 S\n",
        "\n",
        "\n",
        " In fact, the ground track would sweep\n",
        " all latitudes between 30\u00b0N and 30\u00b0S\n"
       ]
      }
     ],
     "prompt_number": 16
    }
   ],
   "metadata": {}
  }
 ]
}