summaryrefslogtreecommitdiff
path: root/Radar_Engineering_and_Funamentals_of_Navigational_Aids/chapter9_1.ipynb
blob: 807fa066c8231a374f8ae8f495656ba30317cfdc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
{
 "metadata": {
  "name": "raju chapter 9"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": "Chapter 9:Radar Antennas"
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.1,Page No:352"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\nDa    = 2.5;                #diameter of parabolic antenna in m\nF     = 5*10**9;           #radar operating frequency in hz\nVo    = 3*10**8;            #velocity of EM wave in m/s\n\n#Calculations\nlamda = Vo/float(F);            #wavelength\nNNBW  = 140*(lamda/float(Da));\nHPBW  = 70*(lamda/float(Da));          #half power beamwidth in deg\n\n#result\n\nprint'NNBW of parabolic reflector is %g'%(NNBW),' degrees';\nprint'HPBW of parabolic reflector is %g'%(HPBW),' degrees';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "NNBW of parabolic reflector is 3.36  degrees\nHPBW of parabolic reflector is 1.68  degrees\n"
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.2,Page No:352"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\nDa    = 2.5;           #diameter of parabolic antenna in m\nF     = 5*10**9;        #radar operating frequency in hz\nVo    = 3*10**8;        #velocity of EM wave in m/s\n\n#Calculations\nlamda = Vo/float(F);       #wavelength\nGp    = 6.4*(Da/float(lamda))**(2);     #gain of parabolic reflector\nG     = 10*math.log10(Gp);           #gain in dB\n\n#result\n\nprint'Gain of parabolic reflector is %3.2f'%G,' dB';",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Gain of parabolic reflector is 40.46  dB\n"
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.3,Page No:352"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nDa    = 0.15;              #diameter of parabolic antenna in m\nF     = 9*10**9;            #radar operating frequency in hz\nVo    = 3*10**8;            #velocity of EM wave in m/s\n\n#Calculations\n\nlamda   = Vo/float(F);                         #wavelength\nGp      = 6.4*(Da/float(lamda))**(2);          #gain of parabolic reflector\nG       = 10*math.log10(Gp);                   #gain in dB\nNNBW    = 140*(lamda/float(Da));\nHPBW    = 70*(lamda/float(Da));                 #half power bandwidth in deg\n\n#result\nprint'NNBW of parabolic reflector is %3.2f'%(NNBW),' degrees';\nprint'HPBW of parabolic reflector is %3.2f'%(HPBW),' degrees';\nprint'Gain of parabolic reflector is %3.2f'%G,;'dB';",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "NNBW of parabolic reflector is 31.11  degrees\nHPBW of parabolic reflector is 15.56  degrees\nGain of parabolic reflector is 21.13\n"
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.4,Page No:353"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\nDa    = 2;                       #diameter of parabolic antenna in m\nF     = 2*10**9;                   #radar operating frequency in hz\nVo    = 3*10**8;                    #velocity of EM wave in m/s\n\n#Calculations\nlamda  = Vo/float(F);                  #wavelength\nGp     = 6.4*(Da/float(lamda))**(2);       #gain of parabolic reflector\nG      = 10*math.log10(Gp);                   #gain in dB\n\n#result\nprint'Gain of parabolic reflector is %3.2f'%G,' dB';",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Gain of parabolic reflector is 30.56  dB\n"
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 7.5,Page No:353"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nF     = 6*10**9;                 #radar operating frequency in hz\nVo    = 3*10**8;                  #velocity of EM wave in m/s\nNNBW  = 5;                        #Null to Null beamwidth\n\n#Calculations\nlamda = Vo/float(F);              #wavelength\n\nDa  = 140*(lamda/float(NNBW));\nHPBW  = 70*(lamda/float(Da));              #half power beamwidth in deg\nGp    = 6.4*(Da/float(lamda))**2;           #gain of parabolic reflector\nG     = 10*math.log10(Gp);                    #gain in dB\n\n#result\nprint'Mouth Diameter of paraboloid is %g'%Da,' m';\nprint'HPBW of parabolic reflector is %g'%(HPBW),' degrees';\n\nprint'Gain of parabolic reflector is %g'%G,' dB';\nprint'Gain of parabolic reflector is %g'%Gp;\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Mouth Diameter of paraboloid is 1.4  m\nHPBW of parabolic reflector is 2.5  degrees\nGain of parabolic reflector is 37.005  dB\nGain of parabolic reflector is 5017.6\n"
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.6,Page No:354"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nF     = 9*10**9;            #radar operating frequency in hz\nVo    = 3*10**8;              #velocity of EM wave in m/s\nNNBW  = 5;                    #Null to Null beamwidth\nDa    = 5;                      #diameter of antenna in m\n\n#Calculations\n\nlamda = Vo/float(F);                    #wavelength\nA     = (math.pi*Da*Da)/float(4);          #actural area of antenna\nAc    = 0.65*A;                         #Capture Area\n\nD     = 6.4*(Da/float(lamda))**2;               #directivity of antenna\nD1     = 10*math.log10(D);                      #gain in dB\nHPBW  = 70*(lamda/float(Da));                    #half power beamwidth in deg\nNNBW  = 2*HPBW;                                #null to null beamwidth \n\n#result\nprint'HPBW of parabolic reflector is %2.2g'%(HPBW),' degrees';\nprint'NNBW of parabolic reflector is %2.2g'%(NNBW),' degrees';\nprint'Directivity is %g'%D1,' dB';\nprint'Capture area is %g'%Ac,' m^2';\n\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "HPBW of parabolic reflector is 0.47  degrees\nNNBW of parabolic reflector is 0.93  degrees\nDirectivity is 51.5836  dB\nCapture area is 12.7627  m^2\n"
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.7,Page No:354"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nDa    = 5;             #diameter of parabolic antenna in m\nF     = 5*10**9;       #radar operating frequency in hz\nVo    = 3*10**8;       #velocity of EM wave in m/s\n\n#Calculations\n\nlamda = Vo/float(F);                 #wavelength\nR     = (2*Da*Da)/float(lamda);       #min distance b/w antennas\n\n#result\nprint'Minimum distance Required is %g'%R,' m';",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Minimum distance Required is 833.333  m\n"
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.8,Page No:354"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nF     = 4*10**9;         #radar operating frequency in hz\nVo    = 3*10**8;         #velocity of EM wave in m/s\nGp    = 500;             #power gain of antenna\n\n#Calculations\n\nlamda = Vo/float(F);                       #wavelength\nDa    = lamda*(Gp/float(6.4))**(0.5);      #diameter of parabolic antenna in m\n\nNNBW  = 140*(lamda/float(Da));              #beamwidth b/w null to null\nHPBW  = 70*(lamda/float(Da));                      #half power beamwidth in deg\n\n#result\nprint'NNBW of parabolic reflector is %3.2f'%NNBW,' degrees';\nprint'HPBW of parabolic reflector is %3.2f'%HPBW,'degrees';\nprint'Mouth diameter of parabolic reflector is %3.2f '%Da,'m';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "NNBW of parabolic reflector is 15.84  degrees\nHPBW of parabolic reflector is 7.92 degrees\nMouth diameter of parabolic reflector is 0.66  m\n"
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.9,Page No:355"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nF     = 9*10**9;           #radar operating frequency in hz\nVo    = 3*10**8;           #velocity of EM wave in m/s\nGp    = 100;               #power gain of antenna in dB\n\n#Calculations\n\nlamda = Vo/float(F);          #wavelength\n#antilog calculation\n#100 = 10log10(Gp);\n#10  = log(Gp)\n\nG     = 10**10;                                  #gain of antenna\nDa    = lamda*math.sqrt(G/float(6.4));           #diameter of parabolic antenna in m\nA     = (math.pi*Da*Da)/float(4);               #Area of antenna\nAc    = 0.65*A;                                 #capture area\nNNBW  = 140*(lamda/float(Da));                         #beamwidth b/w null to null\nHPBW  = 70*(lamda/float(Da));                          #half power beamwidth in deg\n\n#result\nprint'NNBW of parabolic reflector is %g'%NNBW,' degrees';\nprint'HPBW of parabolic reflector is %g'%HPBW,' degrees';\n\nprint'Mouth diameter of parabolic reflector is %3.3f'%Da,' m';\nprint'Capture area is %3.2f'%Ac,'m**2';",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "NNBW of parabolic reflector is 0.00354175  degrees\nHPBW of parabolic reflector is 0.00177088  degrees\nMouth diameter of parabolic reflector is 1317.616  m\nCapture area is 886300.01 m**2\n"
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.10,Page No:356"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nF     = 10*10**9;              #radar operating frequency in hz\nVo    = 3*10**8;                #velocity of EM wave in m/s\nDa    = 5;                     #antenna diameter in m\n\n#Calculations\nlamda = Vo/float(F);                         #wavelength\nGp    = 6.4*(Da/float(lamda))**(2);          #gain of parabolic reflector\nG     = 10*math.log10(Gp);                   #gain in dB\n\nBWFN  = 140*(lamda/float(Da));             #beam width b/n nulls\nHPBW  = 70*(lamda/float(Da));              #half power beamwidth in deg\n\n\n#result\nprint'BWFN of parabolic reflector is %g'%BWFN,' degrees';\nprint'HPBW of parabolic reflector is %g'%HPBW,' degrees';\n\nprint'Gain of parabolic reflector is %g'%G,'dB';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "BWFN of parabolic reflector is 0.84  degrees\nHPBW of parabolic reflector is 0.42  degrees\nGain of parabolic reflector is 52.4988 dB\n"
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.11,Page No:356"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nF     = 10*10**9;               #radar operating frequency in hz\nVo    = 3*10**8;                #velocity of EM wave in m/s\nIE    =0.6;                     #illumination efficiency\nDa    =12;                      #diameter of antenna\n\n#Calculations\n\nlamda = Vo/float(F);                     #wavelength\nGp    = IE*(Da/float(lamda))**(2);       #gain of parabolic reflector\nG     = 10*math.log10(Gp);              #gain in dB\n\n#result\nprint' Gain of parabolic reflector is %3.2f'%G,'dB';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": " Gain of parabolic reflector is 49.82 dB\n"
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.12,Page No:357"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nF     = 4*10**9;         #radar operating frequency in hz\nVo    = 3*10**8;          #velocity of EM wave in m/s\nNNBW  = 8;                #Null to Null beamwidth in degrees \n\n#Calculations\n\nlamda = Vo/float(F);                      #wavelength\nDa    = (140*lamda)/float(NNBW);\nA     = (math.pi*Da*Da)/float(4);         #Area of antenna\nAc    = 0.65*A;                           #capture area\n\n#result\nprint'Mouth diameter of parabolic reflector is %3.3f'%Da,' m'; \nprint'Capture area is %3.2f'%Ac,' m**2';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Mouth diameter of parabolic reflector is 1.312  m\nCapture area is 0.88  m**2\n"
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.13,Page No:357"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nF     = 4*10**9;              #radar operating frequency in hz\nVo    = 3*10**8;              #velocity of EM wave in m/s\nNNBW  = 2;                     #Null to Null Beamwidth in degrees\n\n#Calculations\n\nlamda = Vo/float(F);                  #wavelength\nDa    = (140*lamda)/float(2);         #diameter of antenna in m\nGp    = 6.4*(Da/float(lamda))**(2);   #gain of parabolic reflector\nG     = 10*math.log10(Gp);                 #gain in dB\n\n\n#result\nprint'Gain of parabolic reflector is %g'%G,'dB';\nprint'mouth diameter of the antenna is %g'%Da,'m';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Gain of parabolic reflector is 44.9638 dB\nmouth diameter of the antenna is 5.25 m\n"
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.14,Page No:358"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nHPBW  = 6;                #Half power Beamwidth in degrees\n\n#Calculations\n\nNNBW  = 2*HPBW;           #Null to Null beamwidth in degrees\n\n#HPBW = 70*(lamda/Da);\n#(70/HPBW)= (Da/lamda);\n\nGp    = 6.4*(70/float(HPBW))**(2);            #gain of parabolic reflector\nG     = 10*math.log10(Gp);                    #gain in dB\n\n\n#result\nprint'Gain of parabolic reflector is %3.2f'%G,'dB';\nprint'NNBW of the antenna is %g'%NNBW,'degrees';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Gain of parabolic reflector is 29.40 dB\nNNBW of the antenna is 12 degrees\n"
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.15,Page No:358"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nGp    =6.4*(6)**2;\nG     = 10*math.log10(Gp);           #gain in dB\n\n\n#result\n\nprint'Gain of parabolic reflector is %3.2f'%G,'dB';",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Gain of parabolic reflector is 23.62 dB\n"
      }
     ],
     "prompt_number": 30
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.16,Page No:358"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\nHPBW   = 70/float(7);                #half power beamwidth\nNNBW   = 2*HPBW;                     # null to null beamwidth\n#Gp  = 6.4*(Da/float(lamda))**2;            #power gain \n\n#Gp  = 6.4*((7*lamda)/lamda)^2 ;  power gain of parabolic reflector\n\nGp    =6.4*(7)**2;\nG     = 10*math.log10(Gp);          #gain in dB\n\n\n#reault\nprint'Gain of parabolic reflector is %3.1f'%Gp; \nprint'HPBW of Antenna is %3.1f'%HPBW,' degrees';\nprint'NNBW of Antenna is %3.1f'%NNBW,' degrees';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Gain of parabolic reflector is 313.6\nHPBW of Antenna is 10.0  degrees\nNNBW of Antenna is 20.0  degrees\n"
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.17,Page No:359"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nF     = 8*10**9;             #radar operating frequency in hz\nVo    = 3*10**10;            #velocity of EM wave in cm/s\nD     = 9;                  #pyramida horn  diameter in cm\nW     = 4;                  #pyramida horn  width in cm\n\n#Calculations\n\nlamda   = Vo/float(F);                       #wavelength in cm\nHPBW_E  = 56*(lamda/float(D));               #halfpower beamwidth in E-plane;\nHPBW_H  = 67*(lamda/float(W));               #halfpower beamwidth in H-plane;\nGp      = (4.5*W*D)/float((lamda*lamda));       #power gain\nG       = 10*math.log10(Gp);                        #power gain in dB\nDi      =(7.5*W*D)/float(lamda*lamda);              #directivity\n\n\n#result\nprint'Halfpower beamwidth ib E-plane is %3.2f'%HPBW_E,' degrees';\nprint'Halfpower beamwidth iN H-plane is %3.2f'%HPBW_H,' de0grees';\nprint'Powergain is %3.2f'%G,' dB';\nprint'Directivity is %3.2f'%Di;\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Halfpower beamwidth ib E-plane is 23.33  degrees\nHalfpower beamwidth iN H-plane is 62.81  de0grees\nPowergain is 10.61  dB\nDirectivity is 19.20\n"
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.18,Page No:359"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declartaion\nGp   = (4.5*10*10);             #power gain of square horn antenna\nG    = 10*math.log10(Gp);            #power gain in dB\n\n#result\nprint'Power Gain of Square Horn Antenna is %3.2f'%G,'dB';",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Power Gain of Square Horn Antenna is 26.53 dB\n"
      }
     ],
     "prompt_number": 37
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.19,Page No:359"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nF     = 8*10**9;          #radar operating frequency in hz\nVo    = 3*10**10;         #velocity of EM wave in cm/s\nD     = 10;               #pyramida horn  diameter in cm\nW     = 5;                 #pyramida horn  width in cm\n\n#Calculations\n\nlamda = Vo/float(F);                      #wavelength in cm\nGp     = (4.5*W*D)/float((lamda*lamda));      #power gain\nG      = 10*math.log10(Gp);                   # power gain in dB\nDi     =(7.5*W*D)/float((lamda*lamda));       #directivity\nDI     =10*math.log10(Di);                         #Directivity in dB\n\n\n#result\nprint'Powergain is %3.2f '%G,'dB';\nprint'Directivity is %3.2f'%DI,'dB';",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Powergain is 12.04  dB\nDirectivity is 14.26 dB\n"
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.20,Page No:359"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\nno    = 377;                   #Free space intrinsic impedance in ohms\nZd1   = complex(73,50);              #dipole impedance;\nZd2   = 70;                    #dipole impedance;\nZd3   = 800;                   #dipole impedance;\nZd4   = 400;                   #dipole impedance;\nZd5   = complex(50,10);              #dipole impedance;\nZd6   = complex(50,-30);              #dipole impedance;\nZd7   = 350;                   #dipole impedance;\n\n#Calculations\nK      = (no**2)/float(4);\n#Zs   = (no*no)/(4*Zd); slot impedance\nZs1    = K/Zd1;           #slot impedance\nZs2    = K/(Zd2);           #slot impedance\nZs3    = K/(Zd3);           #slot impedance\nZs4    = K/(Zd4);           #slot impedance\nZs5    = K/(Zd5);           #slot impedance\nZs6    = K/(Zd6);           #slot impedance\nZs7    = K/(Zd7);           #slot impedance\n\n#result\n\nprint'slot impedance if Zd = 73+i50 ohm is %3.3f'%(Zs1.real),'%3.3f i' %(Zs1.imag) ,'ohm';\nprint'slot impedance if Zd = 70 ohm is %3.3f'%(Zs2.real),'ohm';\nprint'slot impedance if Zd = 800 ohm is %3.3f'%(Zs3.real),'ohm';\nprint'slot impedance if Zd = 400 ohm is %3.3f'%(Zs4.real),'ohm';\nprint'slot impedance if Zd = 50+i10 ohm is %3.3f'%(Zs5.real),'%3.3f i' %(Zs5.imag) ,'ohm';\nprint'slot impedance if Zd = 50-i30 ohm is %3.3f'%(Zs6.real),'%3.3f i' %(Zs6.imag) ,'ohm';\nprint'slot impedance if Zd = 350 ohm is %3.3f'%(Zs7.real),'ohm';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "slot impedance if Zd = 73+i50 ohm is 331.314 -226.927 i ohm\nslot impedance if Zd = 70 ohm is 507.604 ohm\nslot impedance if Zd = 800 ohm is 44.415 ohm\nslot impedance if Zd = 400 ohm is 88.831 ohm\nslot impedance if Zd = 50+i10 ohm is 683.312 -136.663 i ohm\nslot impedance if Zd = 50-i30 ohm is 522.533 313.520 i ohm\nslot impedance if Zd = 350 ohm is 101.521 ohm\n"
      }
     ],
     "prompt_number": 41
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.21,Page No:360"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\nRr1   =80*(math.pi*math.pi)*(1/float(20))**(2) ;\n#Rr2 = 80*(pi*pi)*(dl2/lamda)^2 Radiation Resistance in ohms\n#Rr2 = 80*(pi*pi)*((lamda/30)/lamda)^2 Radiation Resistance in ohms\nRr2   =80*(math.pi*math.pi)*(1/float(30))**2 ;\n#Rr3 = 80*(pi*pi)*(dl3/lamda)^2 Radiation Resistance in ohms\n#Rr3 = 80*(pi*pi)*((lamda/40)/lamda)^2 Radiation Resistance in ohms\nRr3   =80*(math.pi*math.pi)*(1/float(40))**(2 );\n\n\n#result\nprint'If Hertzian dipole length is lamda/20 then Radiation Resistance = %3.3f' %Rr1,'ohm';\nprint'If Hertzian dipole length is lamda/30 then Radiation Resistance = %3.3f' %Rr2,' ohm';\nprint'If Hertzian dipole length is lamda/40 then Radiation Resistance = %3.3f' %Rr3,' ohm' ;\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "If Hertzian dipole length is lamda/20 then Radiation Resistance = 1.974 ohm\nIf Hertzian dipole length is lamda/30 then Radiation Resistance = 0.877  ohm\nIf Hertzian dipole length is lamda/40 then Radiation Resistance = 0.493  ohm\n"
      }
     ],
     "prompt_number": 47
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.22,Page No:361"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\nprint'For half wave dipole Emax  =  60*I/float(r)';\nprint'But Pr  = 73 I**2 Watts';\nprint'For Pr  = 1 W';\nprint'I = 1/sqrt(73)';\nprint'Emax = (60/r)*I';\nprint'Gdmax = (4*pi*phi)/Pr';\nprint'as Pr =1 and phi = ((r**(2))*(E**(2)))/no';\nprint'Gdmax = 4*pi*(r**2)*(E**2)/no';\nprint'      = (4*pi*(r**2)*60*60)/(no*r*r*73)' ;\nprint'      = (4*pi*60*60)/(120*math.pi*73)';\nGdmax       = float(120)/73;\n\nprint'Directivity of half wave dipole is %3.3g' %Gdmax ;",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "For half wave dipole Emax  =  60*I/float(r)\nBut Pr  = 73 I**2 Watts\nFor Pr  = 1 W\nI = 1/sqrt(73)\nEmax = (60/r)*I\nGdmax = (4*pi*phi)/Pr\nas Pr =1 and phi = ((r**(2))*(E**(2)))/no\nGdmax = 4*pi*(r**2)*(E**2)/no\n      = (4*pi*(r**2)*60*60)/(no*r*r*73)\n      = (4*pi*60*60)/(120*math.pi*73)\nDirectivity of half wave dipole is 1.64\n"
      }
     ],
     "prompt_number": 44
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.23,Page No:361"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nF   = 12*10**9;           #operating frequency in Ghz\nI   = 2;                  #current in amperes\nRr  = 300;                #  radiation resistance in ohms\n\n#Calculations\nPr  = I*I*Rr;\n\n#result\nprint'Radiated Power is %3.1f'%Pr,' Watts';",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Radiated Power is 1200.0  Watts\n"
      }
     ],
     "prompt_number": 54
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.24,Page No:362"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n#variable declaration\n\nF     = 600*10**6;                #radar operating frequency in hz\nVo    = 3*10**8;                  #velocity of EM wave in m/s\nD     = 1.644;                    #Directivity of the half wave dipole\n\n#Calculations\n\nlamda = Vo/float(F);                         #wavelength\nAe    = ((lamda**2)*D)/(float(4*math.pi));        #effective area of antenna\n\n#result\n\nprint'Effective Area of the antenna is %3.4f'%Ae,' m^2';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Effective Area of the antenna is 0.0327  m^2\n"
      }
     ],
     "prompt_number": 57
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 9.25,Page No:362"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import  math\n\n#variable declaration\n\nF     = 200*10**6;                #radar operating frequency in hz\nVo    = 3*10**8;                   #velocity of EM wave in m/s\nD     = 1.5;                       #Directivity of the Hertzian dipole\n\n#Calculations\n\nlamda = Vo/float(F);                 #wavelength\nAe    = (lamda**2*D)/(4*math.pi);    #effective area of antenna\n\n#result\nprint'Effective Area of the antenna is %3.4f'%Ae,'m^2';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Effective Area of the antenna is 0.2686 m^2\n"
      }
     ],
     "prompt_number": 58
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "",
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}