1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
{
"metadata": {
"name": "raju Chapter 5"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "Chapter 5: FACTORS AFFECTING RADAR OPERATION AND RADAR LOSSES"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 1,Page No:162"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#variable declaration\nprint'mathematically ellipsoid is represented by \\n((x/a)**2)+((y/b)**2)+((z/c)**2) = 1\\n ';\nprint'\\nThe approximate expression for ellipsoid backscattered RCS is given by\\n ';\nprint'\\n\u03c3 =(\u03c0*a**2 b**2 c**2)/[ a**2 (sin\u03b8)**2 (cos\u0278)**+ b**2 (sin\u03b8)**2 (sin\u0278)^2+c**2 (cos\u03b8)**2 ]**2\\n';\nprint'\\nif a = b ,the ellipsoid becomes Roll symmetric,above eqn becomes\\n';\nprint'\\n\u03c3 = (\u03c0* b**4 c**2)/[ a**2 (sin\u03b8)**2 + c**2 (cos\u03b8)**2 ]**2\\n';",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "mathematically ellipsoid is represented by \n((x/a)**2)+((y/b)**2)+((z/c)**2) = 1\n \n\nThe approximate expression for ellipsoid backscattered RCS is given by\n \n\n\u03c3 =(\u03c0*a**2 b**2 c**2)/[ a**2 (sin\u03b8)**2 (cos\u0278)**+ b**2 (sin\u03b8)**2 (sin\u0278)^2+c**2 (cos\u03b8)**2 ]**2\n\n\nif a = b ,the ellipsoid becomes Roll symmetric,above eqn becomes\n\n\n\u03c3 = (\u03c0* b**4 c**2)/[ a**2 (sin\u03b8)**2 + c**2 (cos\u03b8)**2 ]**2\n\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 2,Page No:162"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#variable declaration\nprint'mathematically ellipsoid is represented by \\n((x/a)**2)+((y/b)**2)+((z/c)**2) = 1\\n ';\nprint'\\nThe approximate expression for ellipsoid backscattered RCS is given by\\n ';\nprint'\\n\u03c3 =(\u03c0*a**2 b**2 c**2)/[ a**2 (sin\u03b8)**2 (cos\u0278)**2+ b**2 (sin\u03b8)**2 (sin\u0278)**+c**2 (cos\u03b8)**2 ]**2\\n';\nprint'\\nif a = b = c ,the ellipsoid becomes a sphere,above eqn becomes\\n';\nprint'\\n\u03c3 = (\u03c0* a**6)/[ a**2 (sin\u03b8)**2 + a**2 (cos\u03b8)**2 ]**2\\n';\nprint'\\n\u03c3 = (\u03c0* a**6)/[ a**4]\\n';\nprint'\\n\u03c3 of sphere is \u03c0*a**2 ' ;",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "mathematically ellipsoid is represented by \n((x/a)**2)+((y/b)**2)+((z/c)**2) = 1\n \n\nThe approximate expression for ellipsoid backscattered RCS is given by\n \n\n\u03c3 =(\u03c0*a**2 b**2 c**2)/[ a**2 (sin\u03b8)**2 (cos\u0278)**2+ b**2 (sin\u03b8)**2 (sin\u0278)**+c**2 (cos\u03b8)**2 ]**2\n\n\nif a = b = c ,the ellipsoid becomes a sphere,above eqn becomes\n\n\n\u03c3 = (\u03c0* a**6)/[ a**2 (sin\u03b8)**2 + a**2 (cos\u03b8)**2 ]**2\n\n\n\u03c3 = (\u03c0* a**6)/[ a**4]\n\n\n\u03c3 of sphere is \u03c0*a**2 \n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 3,Page No:163"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#variable declaration\nprint'As it has Circular symmetry ,RCS of circular flat plate is independent \\n of \u0278 ,RCS depends on aspect angle.\\n';\nprint'\\nFor normal incidence \u03b8 = 0,then\\n';\nprint'\\n\u03c3 = (4*\u03c0**3*r**4)/(\u03bb**2)\\n';\nprint'\\nif r = 1 m then\\n';\nprint'\u03c3 = (4*\u03c0**3)/(\u03bb**2)' ;",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "As it has Circular symmetry ,RCS of circular flat plate is independent \n of \u0278 ,RCS depends on aspect angle.\n\n\nFor normal incidence \u03b8 = 0,then\n\n\n\u03c3 = (4*\u03c0**3*r**4)/(\u03bb**2)\n\n\nif r = 1 m then\n\n\u03c3 = (4*\u03c0**3)/(\u03bb**2)\n"
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 4, Page No:163"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n# Variable Declaration\n\nlamda = 0.03; # wavelength in m\nPt = 250*10**3; # transmitter power\nG = 2000; # antenna gain\nR = 50*10**3; # maximum range\nPr = 10*10**-12; # minimum detectable power\n\n# Calculations\nAe = (lamda*lamda*G)/(4*math.pi); # effective aperture area\nRCS = (Pr*(4*math.pi*R*R)**2)/(Pt*G*Ae); # Radar cross section of the target\n\n# Output\nprint 'Radar cross section of the target is %3.2f'%RCS,'m^2';\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Radar cross section of the target is 137.81 m^2\n"
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|