1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
{
"metadata": {
"name": "raju chapter 1"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "Chapter 1:Introduction to Radar, Radar Parameters and their Definitions"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 1, Page No:34"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#variable declaration\nPRF= 1000; #pulse repetitive frequency in Hz\nPW = 2*10**-6; #pulse width 2us\nPav=100; #average power in watts\n\n#Calculations\n\nPpeak = (Pav)/float((PW*PRF)); #Peak power in watts\nD = Pav/float(Ppeak); #Duty cycle\n\n#result\nprint' Peak power is ',Ppeak/1000,' KW';\nprint' Duty cycle is %3.1e'%D;\n\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " Peak power is 50.0 KW\n Duty cycle is 2.0e-03\n"
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 2, Page No:35"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#variable declaration\nPRF = 1.2*10**3; #pulse repetitive frequency in Hz\nPI = 0.6*10**-3; #pulse interval in sec\n\n#Calculations\n\nPRT = 1/float(PRF); #pulse repetition frequency in Hz\nPW = PRT-PI; #pulse width in sec;\n\n#result\nprint'Pulse repetitive time is %2.3g'%(PRT*1000),'ms';\nprint'Pulse width is %2.3g'%(PW*1000),'ms';\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Pulse repetitive time is 0.833 ms\nPulse width is 0.233 ms\n"
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 3,Page No:35"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#variable declaration\nD = float(0.001); #Duty Cycle\nPpeak =500*10**3; #Peak Power in Watts\n\n#Calculations\n\nPav = D * Ppeak; # D=averagepower/Peakpower;\n\n#result\nprint'Average power is %g'%Pav,' Watts';\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Average power is 500 Watts\n"
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 4:Page No:35"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#variable declaration\n\nPRF = 1000; # pulse repetitive frequency in Hz\nPpeak = 10*10**6; # peak power in watts\nPav = 100*10**3; # average power in watts\n\n#Calculations\n\nD = Pav/float(Ppeak); #Duty cycle\nPRT = 1/float(PRF); #pulse repetitive time;\n\n#result\n\nprint'Duty cycle is %g'%D;\nprint'Repetitive time is %g'%(PRT*1000),'ms';\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Duty cycle is 0.01\nRepetitive time is 1 ms\n"
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 5, Page No:36"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n#variable declaration\nF = 6*10**9; #frequency in Hz\nVo = 3*10**8; #velocity in m/s;\nVr = 200; #Radial velocity in kmph\n\n#Calculations\n\nlamda = Vo/float(F); #wavelength = vel/freq;\nFd = (2*Vr/float(lamda))*(5/float(18)); #doppler frequency in Hz\n\n#5/18 is multiplied to convert kmph to m/s\n\n#result\nprint'Doppler Frequency is %3.3g'%(Fd/1000),'KHz';\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Doppler Frequency is 2.22 KHz\n"
}
],
"prompt_number": 15
}
],
"metadata": {}
}
]
}
|