1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
|
{
"metadata": {
"name": "",
"signature": "sha256:c23ae85b629821355f70fc5abaa38e7f6336abdb19ba09fa0e8e1a4bdcd9679f"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 11 : Fluidisation\n"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"example 11.1 page no : 216"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"# Initialization of Variable\n",
"pi = 3.1428\n",
"d = 0.3/1000\n",
"mu = 2.21/100000\n",
"rho = 106.2 #density under operating condition\n",
"u = 2.1/100\n",
"rhos = 2600. #density of particles\n",
"l = 3.25\n",
"g = 9.81\n",
"dt = 0.95 #fluidising diameter\n",
"\n",
"\n",
"#part 1\n",
"#calculation\n",
"a = u**2./d/g*d*rho*u/mu*(rhos-rho)/rho*l/dt\n",
"if a>100 :\n",
" print \"Bubbling fluidisation will occur as value is %.4f\"%a\n",
"\n",
"#part 2\n",
"Q = 2.04/100000\n",
"rhos = 2510.\n",
"rho = 800.\n",
"mu = 2.85/1000\n",
"l = 4.01\n",
"dt = 0.63\n",
"d = 0.1/1000\n",
"u = Q*4/pi/dt**2\n",
"a = u**2/d/g*d*rho*u/mu*(rhos-rho)/rho*l/dt\n",
"if a<100*10**-4: #compare as value of a is much less than 100\n",
" print \"fluidisation occur in smooth mode as value is: %.4e\"%a\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Bubbling fluidisation will occur as value is 364.4332\n",
"fluidisation occur in smooth mode as value is: 1.0898e-07\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"example 11.2 page no ;218"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"# Initialization of Variable\n",
"d = 50./1000000\n",
"rhos = 1850. #density of particle\n",
"rho = 880. #density of hydrocarbon\n",
"mu = 2.75/1000 #viscosity of hydrocarbon\n",
"e = 0.45 #void fraction coeff.\n",
"g = 9.81\n",
"h = 1.37 #flow depth\n",
"c = 5.5/1000 #c = 1/K\n",
"\n",
"#calculation\n",
"#part 1\n",
"u = c*e**3*d**2*g*(rhos-rho)/mu/(1-e)\n",
"print \"The superficial linear flow rate in (m/s): %.3e\"%u\n",
"\n",
"#part 2\n",
"u = d**2*g*(rhos-rho)/18/mu\n",
"print \"Terminal Settling Velocity in (m/s): %.4f\"%u\n",
"Re = d*u*rho/mu\n",
"if Re<2 :\n",
" print \"Stoke law assumption is sustained with this velocity\"\n",
"\n",
"#part 3\n",
"P = g*(rhos-rho)*h*(1-e)\n",
"print \"Pressure drop across fluidised bed in (N/m**2):\",P\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The superficial linear flow rate in (m/s): 7.883e-06\n",
"Terminal Settling Velocity in (m/s): 0.0005\n",
"Stoke law assumption is sustained with this velocity\n",
"Pressure drop across fluidised bed in (N/m**2): 7170.07995\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"example 11.3 page no : 221"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"from numpy import *\n",
"# Initialization of Variable\n",
"g = 9.81\n",
"rhos = 1980. #density of ore\n",
"rho = 1.218 #density of air\n",
"e = 0.4\n",
"mu = 1.73/10**5\n",
"s = 0\n",
"wp = array([0, .08, .20, .40, .60, .80, .90, 1.00]) #weight percent\n",
"d = true_divide([0.4 ,0.5, 0.56, 0.62, 0.68, 0.76, 0.84, 0.94],1000)\n",
"dav = [0,0,0,0,0,0,0]\n",
"mf = [0,0,0,0,0,0,0]\n",
"a = [0,0,0,0,0,0,0]\n",
"#part 1\n",
"for i in range(7):\n",
" dav[i] = d[i+1]/2+d[i]/2. #average dia\n",
" mf[i] = wp[i+1]-wp[i] #mass fraction\n",
" a[i] = mf[i]/dav[i]\n",
" s = s+a[i]\n",
"\n",
"db = 1/s #d bar\n",
"\n",
"#quadratic coeff. ax**2 +bx +c = 0\n",
"c = -(rhos-rho)*g\n",
"b = 150.*(1-e)/e**3/db**2*mu\n",
"a = 1.75*rho/e**3/db\n",
"y = poly1d([a,b,c],False)\n",
"U = roots(y)\n",
"print \"the linear air flow rate in (m/s): %.4f\"%(abs(U[1]))\n",
"\n",
"#part 2\n",
"d = 0.4/1000\n",
"a = 2*d**3/3/mu**2*rho*(rhos-rho)*g\n",
"a = math.log10(a)\n",
"print \"log10(Re**2/rho/U**2*R) = %.4f\"%a\n",
"\n",
"#using chart\n",
"Re = 10**1.853\n",
"u = Re*mu/rho/d\n",
"print \"speed required for smallest particle in (m/s): %.4f\"%u\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the linear air flow rate in (m/s): 0.2643\n",
"log10(Re**2/rho/U**2*R) = 3.5277\n",
"speed required for smallest particle in (m/s): 2.5313\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"example 11.4 page no : 224"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"from numpy import *\n",
"\n",
"# Initialization of Variable\n",
"U = 2.032/10**4\n",
"pi = 3.1428\n",
"rho = 852\n",
"g = 9.81\n",
"mu = 1.92/1000\n",
"mf = 125/3600. #mass flow rate\n",
"\n",
"#calculation\n",
"#part 1\n",
"G = U*rho\n",
"A = mf/G\n",
"d = math.sqrt(4*A/pi)\n",
"print \"the diameter of vessel will be in(m): %.4f\"%d\n",
"\n",
"#part 2\n",
"A = 0.201\n",
"e = 0.43\n",
"ms = 102. #mass of solids\n",
"rhos = 1500. #density of solid\n",
"L = ms/rhos/A\n",
"Lmf = L/(1-e)\n",
"print \"depth of bed in (m): %.4f\"%Lmf \n",
"\n",
"#part 3\n",
"d1 = 0.2/1000\n",
"U = 2.*5.5/10**3*e**3*d1**2*(rhos-rho)*g/mu/(1-e)\n",
"\n",
"#now euating for e\n",
"#a = e**3/(1-e)\n",
"a = U/5.5*10**3/(d1**2*(rhos-rho)*g/mu)\n",
"y = poly1d([1,0,a,-a],False)\n",
"e2 = roots(y)\n",
"L = Lmf*(1-e)/(1-e2[2])\n",
"print \"depth of fluidised bed under operating condition in (m): %.4f\"%L\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the diameter of vessel will be in(m): 0.5052\n",
"depth of bed in (m): 0.5935\n",
"depth of fluidised bed under operating condition in (m): 0.6958\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"-c:45: ComplexWarning: Casting complex values to real discards the imaginary part\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"example 11.5 page no : 227"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"# Initialization of Variable\n",
"g = 9.81\n",
"pi = 3.1428\n",
"r = 0.51\n",
"e = 0.48 #void ratio\n",
"rhos = 2280. #density of glass\n",
"rho = 1.204 #density of air\n",
"U = 0.015 #velocity of water entering bed\n",
"L = 7.32\n",
"gam = 1.4 #gamma\n",
"neta = 0.7 #efficiency\n",
"P4 = 1.013*10**5\n",
"P1 = P4\n",
"v1 = 1/1.204 #volume 1\n",
"\n",
"#calculation\n",
"P3 = P4+g*(rhos-rho)*(1-e)*L\n",
"P2 = P3+0.1*85090\n",
"v2 = (P1*v1**gam/P2)**(1/gam) #vlume 2\n",
"W = 1/neta*gam/(gam-1)*(P2*v2-P1*v1) #work done\n",
"v3 = P2*v2/P3 #volume 3\n",
"M = U*pi*r**2/v3 #mass flow rate\n",
"P = M*W\n",
"\n",
"# Results\n",
"print \"The power supplies to the blower in (W): %.4f\"%P\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The power supplies to the blower in (W): 1948.7509\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"example 11.6 page no : 230"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"# Initialization of Variable\n",
"dt = 12.7/1000\n",
"d = 1.8/1000\n",
"Q = 2.306/10**6\n",
"pi = 3.1428\n",
"\n",
"#calculation\n",
"#part 1\n",
"Sc = 4./dt\n",
"S = 6./d\n",
"f = (1+0.5*Sc/S)**2\n",
"U = Q*4/pi/dt**2 #velocity\n",
"Ua = f*U #actual velocity\n",
"print \"minimum fluidising velocity found using smaller glass column in (m/s): %.4f\"%Ua\n",
"\n",
"#part 2\n",
"dt = 1.5\n",
"Sc = 4./dt\n",
"f = (1+0.5*Sc/S)**2\n",
"Ua = f*U #actual velocity\n",
"print \"fluidising velocity found using larger glass column in (m/s): %.4f\"%Ua\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"minimum fluidising velocity found using smaller glass column in (m/s): 0.0200\n",
"fluidising velocity found using larger glass column in (m/s): 0.0182\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"example 11.7 page no : 232"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"# Initialization of Variable\n",
"e = 0.4 #incipent to fluidisation\n",
"\n",
"#calculation\n",
"#part 1\n",
"print \"for Re<500\"\n",
"print \"the ratio of terminal velocity & minimmum fluidising velocity is\"\n",
"\n",
"a = 3.1*1.75/e**3\n",
"\n",
"print math.sqrt(a)\n",
"\n",
"#part 2\n",
"print \"for Re>500\"\n",
"print \"the ratio of terminal velocity & minimmum fluidising velocity is\"\n",
"a = 150.*(1-e)/18./e**3\n",
"print a\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"for Re<500\n",
"the ratio of terminal velocity & minimmum fluidising velocity is\n",
"9.20682491416\n",
"for Re>500\n",
"the ratio of terminal velocity & minimmum fluidising velocity is\n",
"78.125\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|