summaryrefslogtreecommitdiff
path: root/Principles_of_physics_by_P.V.Naik/chapter1.ipynb
blob: af9f2d9498adcb55d244b96e8d90a10743946814 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
{
 "metadata": {
  "name": "",
  "signature": "sha256:aa8849d14e0b72277789cfe0c1cc3e7e66ca9061ac47dccbae27561c50c68d32"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 1 Motion"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.1 Page no 17"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "d=180                              #Distance of satellite above the surface of earth in km\n",
      "t=90                               #Time taken to complete one revolution of the earth in minutes\n",
      "r=6400                             #Radius of the earth in kms\n",
      "\n",
      "#Calculations\n",
      "R=(r+d)*1000\n",
      "T=t*60\n",
      "v=(2*3.14*R)/T\n",
      "a=(v**2/R)\n",
      "\n",
      "#Output\n",
      "print\"Orbital speed is \",round(v,0),\"m/s\"  \n",
      "print\"Centripetal acceleration is \",round(a,1),\"m/s**2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Orbital speed is  7652.0 m/s\n",
        "Centripetal acceleration is  8.9 m/s**2\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.2 Page no 17"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "m=0.05                           #Mass of the stone in kg\n",
      "r=0.4                            #Radius of the string in m\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "vh=math.sqrt(9.8*r)\n",
      "vl=math.sqrt((2/m)*(((1/2.0)*m*vh**2)+(m*9.8*2*r)))\n",
      "\n",
      "#Output\n",
      "print\"Minimum speed when the stone is at the top of the circle is \",round(vh,2),\"m/s\" \n",
      "print\"Minimum speed when the stone is at the bottom of the circle is \",round(vl,2),\"m/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Minimum speed when the stone is at the top of the circle is  1.98 m/s\n",
        "Minimum speed when the stone is at the bottom of the circle is  4.43 m/s\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.3 Page no 17"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "m=0.2                             #Mass of the ball in kg\n",
      "r=1.5                             #Radius of vertical circle in m\n",
      "q=35                              #Angle made by the ball in degrees\n",
      "v=6                               #Velocity of the ball in m/s\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "T=(m*((v**2/r)+(9.8*math.cos(q*3.14/180.0))))\n",
      "at=9.8*math.sin(q*3.14/180.0)\n",
      "ar=(v**2/r)\n",
      "a=math.sqrt(at**2+ar**2)\n",
      "\n",
      "#Output\n",
      "print\"Tension in the string is \",round(T,1),\"N\" \n",
      "print\"Tangential acceleration is \",round(at,2),\"m/s**2\"  \n",
      "print\"Radial acceleration is \",ar,\"m/s**2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Tension in the string is  6.4 N\n",
        "Tangential acceleration is  5.62 m/s**2\n",
        "Radial acceleration is  24.0 m/s**2\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.4 Page no 17"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "#A small ball is released from height of 4r measured from the bottom of the loop, where r is the radius of the loop\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "ar=(6*9.8)\n",
      "at=(9.8*math.sin(90*3.14/180.0))\n",
      "\n",
      "#Output\n",
      "print\"Radial acceleration is \",ar,\"m/s**2\"\n",
      "print\"Tangential acceleration is \",round(at,1),\"m/s**2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Radial acceleration is  58.8 m/s**2\n",
        "Tangential acceleration is  9.8 m/s**2\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.5 Page no 18"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "l=0.95                                  #Length of the strring in m\n",
      "m=0.15                                  #Mass of the bob in kg\n",
      "r=0.25                                  #Radius of the circle in m\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "h=math.sqrt(l**2-r**2)\n",
      "t=2*3.14*math.sqrt(h/9.8)\n",
      "\n",
      "#Output\n",
      "print\"The period of rotation is \",round(t,2),\"s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The period of rotation is  1.92 s\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.6 Page no 18"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "N=40.0                                  #Minimum speed of rotor in rpm\n",
      "r=2.5                                   #Radius of rotor in m\n",
      "\n",
      "#Calculations\n",
      "t=60/N\n",
      "u=(9.8*t**2)/(4.0*3.14**2*r)\n",
      "\n",
      "#Output\n",
      "print\"The coefficient of limiting friction between the object and the wall of the rotor is \",round(u,3)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The coefficient of limiting friction between the object and the wall of the rotor is  0.224\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.7 Page no 18"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "a=30                                  #Angle of inclination in degrees\n",
      "t=3                                   #Time in s\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "a=(9.8*math.sin(a*3.14/180.0))\n",
      "v=(0+a*t)\n",
      "\n",
      "#Output\n",
      "print\"Speed of the block after \",t,\"s is \",round(v,1),\"m/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Speed of the block after  3 s is  14.7 m/s\n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.8 Page no 19"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "m=10.0                            #Mass of the block in kg\n",
      "F1=40                            #Horizontal force to start moving in N\n",
      "F2=32                            #Horizontal force to move with constant velocity in N\n",
      "\n",
      "#Calculations\n",
      "u1=(F1/(m*9.8))\n",
      "u2=(F2/(m*9.8))\n",
      "\n",
      "#Output\n",
      "print\"Coefficient of static friction is \",round(u1,3)\n",
      "print\"Coefficient of kinetic friction is \",round(u2,4)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Coefficient of static friction is  0.408\n",
        "Coefficient of kinetic friction is  0.3265\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.9 Page no 19"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "m=(3,12)                               #Masses of the blocks in kg\n",
      "q=50                                   #Angle made by the string in degrees\n",
      "a=3                                    #Acceleration of 12kg block in m/s^2\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "T=m[0]*(9.8+a)\n",
      "u=(m[1]*(9.8*math.sin(q*3.14/180.0)-a)-T)/(m[1]*9.8*math.cos(q*3.14/180.0))\n",
      "\n",
      "#Output\n",
      "print\"Tension in the string is \",T,\"N\"  \n",
      "print\"The coefficient of kinetic friction is \",round(u,3)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Tension in the string is  38.4 N\n",
        "The coefficient of kinetic friction is  0.207\n"
       ]
      }
     ],
     "prompt_number": 54
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.e.1 Page no 9"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "w=50                                           #Weight in N\n",
      "a=(40,50)                                      #Angles made by two cables in degrees\n",
      "\n",
      "#Calculations\n",
      "#Solving two equations obtained from fig. 1.10 on page no.10\n",
      "#-T1cos40+T2cos50=0\n",
      "#T1sin40+T2sin50=50\n",
      "import math\n",
      "A = array([[math.cos(a[1]*3.14/180.0),-math.cos(a[0]*3.14/180.0)], \n",
      "           [math.sin(a[0]*3.14/180.0),math.sin(a[1]*3.14/180.0)]])\n",
      "b = array([0,50])\n",
      "X = solve(A, b)\n",
      "T2=X[1]\n",
      "print \"T2=\",round(T2,1),\"N\"\n",
      "T1=(math.cos(a[1]*3.14/180.0)/math.cos(a[0]*3.14/180.0))*T2\n",
      "print \"T1\",round(T1,1),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "T2= 32.7 N\n",
        "T1 27.4 N\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.e.5 Page no 13"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "m=100.0                                    #Mass of block in kg\n",
      "F=500                                      #Force in N\n",
      "q=30                                       #Angle made with the horizontal in degrees\n",
      "u=0.4                                      #Coefficient of sliding friction\n",
      "\n",
      "#Calculations\n",
      "R=m*9.8\n",
      "f=(u*R)\n",
      "a=(F*math.cos(q*3.14/180.0)-f)/m\n",
      "\n",
      "#Output\n",
      "print\"The acceleration of the block is \",round(a,2),\"m/s**2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The acceleration of the block is  0.41 m/s**2\n"
       ]
      }
     ],
     "prompt_number": 56
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.e.6 Page no 14"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "m=(20.0,80.0)                               #Masses of blocks in kg\n",
      "F=1000                                  #Force with which 20kg block is pulled in N\n",
      "\n",
      "#Calculations\n",
      "a=F/(m[0]+m[1])\n",
      "T=F-(m[0]*a)\n",
      "\n",
      "#Output\n",
      "print\"The acceleration produced is \",a,\"m/s^2\" \n",
      "print\"The tension in the string connecting the blocks is \",T,\"N\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The acceleration produced is  10.0 m/s^2\n",
        "The tension in the string connecting the blocks is  800.0 N\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.e.8 Page no 15"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "w=588                                 #Weight of the person in N\n",
      "a=3                                   #Acceleration in m/s^2\n",
      "b=180\n",
      "\n",
      "#Calculations\n",
      "m=(w/9.8)\n",
      "P=(w+(m*a))\n",
      "p=w-b\n",
      "\n",
      "#Output\n",
      "print\"Weight of the person when the elevator is accelerated upwards is \",P,\"N\"\n",
      "print\"Weight of the person when the elevator is accelerated upwards is \",p,\"N\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Weight of the person when the elevator is accelerated upwards is  768.0 N\n",
        "Weight of the person when the elevator is accelerated upwards is  408 N\n"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}