1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
{
"metadata": {
"name": "",
"signature": "sha256:483ac761a0ac81598a32958276222effb2c60791a86a62e2445fc0aaf9c0e97b"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 9 Interference"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.1 Page no 136"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"t=0.2 #Thickness of film in micro m\n",
"r=1.25 #Refractive index of liquid\n",
"w=(4000,5000) #Range of wavelength in Angstrom\n",
"q=35 #Angle observed in degrees\n",
"\n",
"#Calculations\n",
"import math\n",
"u=math.asin(math.sin(q*3.14/180.0)/r)*180/3.14\n",
"w1=(2*t*10**-6*r*math.cos(u*3.14/180.0))/10**-10\n",
"w2=w1/2.0 \n",
"\n",
"#Output\n",
"print\"Wavelength absent in reflected light is \",round(w2,0),\"Angstrom\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Wavelength absent in reflected light is 2222.0 Angstrom\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.2 Page no 136"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"r=1.39 #Refractive index of the film \n",
"q=30 #Angle observed in degrees\n",
"w=(5125,5000) #Wavelengths of two consecutive dark bands in Angstrom\n",
"\n",
"#Calculations\n",
"import math\n",
"r1=math.asin(math.sin(q*3.14/180.0)/r)*180/3.14\n",
"n=w[1]/(w[0]-w[1])\n",
"t=((n*w[0]*10**-8)/(2.0*r*math.cos(r1*3.14/180.0)))/10**-4\n",
"\n",
"#Output\n",
"print\"Thickness of the film is \",round(t,4),\"*10**-4 cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Thickness of the film is 7.9026 *10**-4 cm\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.3 Page no 137"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"r=1.4 #Refractive index of the material\n",
"w=5893 #Wavelength of yellow light in Angstrom\n",
"n=10 #Number of bands\n",
"w1=0.009 #Width of band in m\n",
"\n",
"#Calculations\n",
"import math\n",
"b=math.asin((w*10**-8)*180/3.14/(2.0*r*n*w1))\n",
"\n",
"#Output\n",
"print\"Angle of wedge is \",round(b,4),\"degrees\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Angle of wedge is 0.0134 degrees\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.4 Page no 137"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"r=1.0 #Refractive index\n",
"n=4 #Number of bands\n",
"w=6500 #Wavelength in Angstrom\n",
"\n",
"#Calculations\n",
"t=(((n+(1/2.0))*w*10**-8)/(2*r))/10.0**-4\n",
"\n",
"#Output\n",
"print\"Thickness of wedge shaped air film is \",t,\"*10**-4 cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Thickness of wedge shaped air film is 1.4625 *10**-4 cm\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.5 Page no 137"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"d=0.5 #Diameter of the ring in cm\n",
"n=4 #number of bands\n",
"w=5893 #Wavelength of light in Angstrom\n",
"q=30 #Angle at which light enters in degrees\n",
"\n",
"#Calculations\n",
"import math\n",
"R=((d**2*math.cos(q*3.14/180.0))/(2.0*(2*n+1)*w*10**-8))\n",
"\n",
"#Output\n",
"print\"Radius of curvature of lens is \",round(R,1),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Radius of curvature of lens is 204.1 cm\n"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|