summaryrefslogtreecommitdiff
path: root/Principles_of_physics/chapter4.ipynb
blob: 5aa2ceb90456e1bb545b9189c2a4eea02e40fe42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
{
 "metadata": {
  "name": "",
  "signature": "sha256:b7bd6954751643f92d25f5c6d00ec1b3a41e28e3d14c6105ad117f2707f6395b"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 4 Rotational motion of Rigid objects"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.1 Page no 54"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "w=4                                       #Angular velocity in rad/s\n",
      "m=(1,2,3,4)                               #Masses in kg from the figure 4.17 on page no.54 \n",
      "r=(2.5,1.5)                               #Centre position in m\n",
      "\n",
      "#Calculations\n",
      "I=(m[0]+m[1]+m[2]+m[3])*(r[0]**2+r[1]**2)\n",
      "KE=(1/2.0)*I*w**2\n",
      "\n",
      "#Output\n",
      "print\"The moment of inertia is \",I,\"kg.m**2\" \n",
      "print\"Kinetic energy of the system is \",KE,\"J\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The moment of inertia is  85.0 kg.m**2\n",
        "Kinetic energy of the system is  680.0 J\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.2 Page no 55"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "q=30                                        #Angle of inclination in degrees\n",
      "h=1                                         #Height in m\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "v=math.sqrt((10/7.0)*9.8*h)\n",
      "a=(5/7.0)*9.8*math.sin(q*3.14/180.0)\n",
      "\n",
      "#Output\n",
      "print\"Velocity and acceleration of the centre of mass of the sphere is \",round(v,2),\"m/s and \",round(a,1),\"m/s**2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Velocity and acceleration of the centre of mass of the sphere is  3.74 m/s and  3.5 m/s**2\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.3 Page no 55"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "m=1.2                                       #Mass of the rod in kg\n",
      "l=0.8                                       #Length of the rod in m\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "T=2*3.14*math.sqrt((2*l)/(3.0*9.8))\n",
      "\n",
      "#Output\n",
      "print\"Period of oscillation is \",round(T,2),\"s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Period of oscillation is  1.47 s\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.4 Page no 55"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "r=0.2                                             #Radius of uniform disc in m\n",
      "d=0.15                                            #Distance from the centre in m\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "T=2*3.14*math.sqrt((17*r)/(12.0*9.8))\n",
      "\n",
      "#Output\n",
      "print\"The period of oscillation is \",round(T,3),\"s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The period of oscillation is  1.068 s\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.5 Page no 55"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "m=3                                                #Mass of the rotor in kg\n",
      "I=0.03                                             #Moment of inertia in kg.m^2\n",
      "d=0.25                                             #Distance of pivot from the centre in m\n",
      "p=30                                               #Precession in rpm\n",
      "\n",
      "#Calculations\n",
      "T=m*9.8*d\n",
      "w=(p*2*3.14)/60.0\n",
      "w1=(T/(I*w))\n",
      "\n",
      "#Output\n",
      "print\"Angular speed of rotation of the rotor is \",round(w1,0),\"rpm\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Angular speed of rotation of the rotor is  78.0 rpm\n"
       ]
      }
     ],
     "prompt_number": 6
    }
   ],
   "metadata": {}
  }
 ]
}