1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
{
"metadata": {
"name": "",
"signature": "sha256:754c71c2e29646e743d2602122b6349e57c8b539ae4803d803ea41cdce275af3"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3 Potential energy"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1 page no 35"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"m=0.04 #Mass of stone in kg\n",
"vi=25 #Initial velocity in m/s\n",
"vf=0 #Final velocity in m/s\n",
"yi=0 #Initial height in m\n",
"\n",
"#Calculations\n",
"import math\n",
"Ui=(m*9.81*yi)\n",
"Ki=(1/2.0)*m*vi**2\n",
"Etotal=(Ui+Ki)\n",
"h=(Etotal/(m*9.8))\n",
"#when the stone is at (2/3)h, total energy is again same\n",
"v=math.sqrt((Etotal-(m*9.8*(2/3.0)*h))/((1/2.0)*m))\n",
"\n",
"#Output\n",
"print\"Maximum height it will reach is \",round(h,1),\"m\" \n",
"print\"velocity when it is at the two-third of its maximum height is \",round(v,2),\"m/s\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum height it will reach is 31.9 m\n",
"velocity when it is at the two-third of its maximum height is 14.43 m/s\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2 page no 36"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"m=0.5 #Mass of the sphere in kg\n",
"vi=100 #Initial velocity in m/s\n",
"vf=20 #Final velocity in m/s\n",
"\n",
"#Calculations\n",
"h=(vi**2-vf**2)/(2.0*9.8)\n",
"PE=(m*9.8*h)\n",
"\n",
"#Calculations\n",
"print\"Potential energy of the sphere is \",PE,\"J\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Potential energy of the sphere is 2400.0 J\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3 page no 36"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"m=0.5 #Mass of the block in kg\n",
"x=0.05 #Distance to which block is pulled in m\n",
"k=300 #Force constant of the spring in N/m\n",
"\n",
"#Calculations\n",
"import math\n",
"U=(1/2.0)*k*x**2\n",
"v=x*math.sqrt(k/m)\n",
"\n",
"#Output\n",
"print\"Potential energy of the block when spring is in stretched position is \",U,\"J\" \n",
"print\"Velocity of the block when it passes through the equilibrium position is \",round(v,2),\" m/s\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Potential energy of the block when spring is in stretched position is 0.375 J\n",
"Velocity of the block when it passes through the equilibrium position is 1.22 m/s\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4 page no 37"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"l=0.8 #Length of a simple pendulum in m\n",
"q=30 #Angle with the vertical through which the bob is released in degrees\n",
"q1=10 #Required angle in degrees\n",
"\n",
"#Calculations\n",
"import math\n",
"v=math.sqrt(2*9.8*l*(math.cos(q1*3.14/180.0)-math.cos(q*3.14/180.0)))\n",
"\n",
"#Output\n",
"print\"Speed when the bob is at the angle of \",q1,\"degrees with the vertical is \",round(v,2),\"m/s\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Speed when the bob is at the angle of 10 degrees with the vertical is 1.36 m/s\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5 page no 37"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"m=(9.1*10**-31) #Mass of the electron in kg\n",
"v=(3*10**8) #Velocity of light in m/s\n",
"c=(1.6*10**-19) #Charge of the electron in coloumbs\n",
"\n",
"#Calculations\n",
"import math\n",
"Re=(m*v**2)/(c*10**6)\n",
"E=(Re/math.sqrt(1-0.9**2))\n",
"\n",
"#Output\n",
"print\"Rest energy of the electron is \",round(Re,3),\"MeV\" \n",
"print\"Total energy is \",round(E,2),\"MeV\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rest energy of the electron is 0.512 MeV\n",
"Total energy is 1.17 MeV\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|