summaryrefslogtreecommitdiff
path: root/Principles_of_physics/chapter15.ipynb
blob: 0bee9bed0bd25059bae22f45d16d72c2ce965966 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
{
 "metadata": {
  "name": "",
  "signature": "sha256:59edd30f642482e981d4bbdb68206500dec6663b6b414fcdfbc2ce9fb1f1258c"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 15 Motion of a charged particle"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.1 Page no 254"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "E=5000                                        #Intensity of electric field in N/C\n",
      "d=0.02                                        #Distance in m\n",
      "e=(1.6*10**-19)                               #Charge of the electron in C\n",
      "m=(9.1*10**-31)                               #Mass of the electron in kg\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "v=math.sqrt(2*e*E*d/m)/10**6\n",
      "\n",
      "#Output\n",
      "print\"Speed of the electron is \",round(v,2),\"*10**6 m/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Speed of the electron is  5.93 *10**6 m/s\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.2 Page no 255"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "v=(5*10**6)                                      #Velocity of the electron in m/s\n",
      "E=2000                                           #Intensity of electric field in N/C\n",
      "d=0.06                                           #Distance in m\n",
      "e=(1.6*10**-19)                                  #Charge of the electron in C\n",
      "m=(9.1*10**-31)                                  #Mass of the electron in kg\n",
      "\n",
      "\n",
      "#Calculations\n",
      "y=((-e*E*d**2)/(2*m*v**2))*100\n",
      "\n",
      "#Output\n",
      "print\"Vertical displacement of the electron when it just leaves the electric field is \",round(y,2),\"cm\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Vertical displacement of the electron when it just leaves the electric field is  -2.53 cm\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.3 Page no 255"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "v=(4*10**5)                                    #Velocity of the positively charged particle in m/s\n",
      "E=300                                          #Intensity of electric field in N/C\n",
      "e=(1.6*10**-19)                                #Charge of the positively charged particle in C\n",
      "m=(1.67*10**-27)                               #Mass of the positively charged particle in kg\n",
      "q=35                                           #Angle made by the particle in degrees\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "t=((v*math.sin(q*3.14/180.0)*m)/(e*E))/10**-6\n",
      "\n",
      "#Output\n",
      "print\"Time required by the particle to reach the maximum height in the electric field is \",round(t,2),\"micro s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Time required by the particle to reach the maximum height in the electric field is  7.98 micro s\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.4 Page no 255"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "r=0.3                                    #Radius of circular orbit in m\n",
      "B=0.38                                   #Magnetic field strength in T\n",
      "e=(1.6*10**-19)                          #Charge of the proton in C\n",
      "m=(1.672*10**-27)                        #Mass of the proton in kg\n",
      "\n",
      "#Calculations\n",
      "v=((e*B*r)/m)/10**6\n",
      "\n",
      "#Output\n",
      "print\"Orbital speed of the proton is \",round(v,0),\"*10**6 m/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Orbital speed of the proton is  11.0 *10**6 m/s\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.5 Page no 255"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "e=(1.6*10**-19)                                      #Charge of the proton in C\n",
      "m=(1.67*10**-27)                                     #Mass of the proton in kg\n",
      "B=0.8                                                #Magnetic field strength in T\n",
      "v=(4*10**6,3*10**6)                                  #Velocity of charged particle in vxi+vyj form in m/s\n",
      "\n",
      "#Calculations\n",
      "p=(v[0]*2*3.14*m)/(e*B)\n",
      "R=(m*v[1])/(e*B)\n",
      "\n",
      "#Output\n",
      "print\"The pitch of the helix is \",round(p,3),\"m\" \n",
      "print\"Radius of the trajectory is \",round(R,3),\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The pitch of the helix is  0.328 m\n",
        "Radius of the trajectory is  0.039 m\n"
       ]
      }
     ],
     "prompt_number": 2
    }
   ],
   "metadata": {}
  }
 ]
}