summaryrefslogtreecommitdiff
path: root/Principles_of_physics/chapter10.ipynb
blob: 3b53a368f0125cc5db19472e224be1fceb15941f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
{
 "metadata": {
  "name": "",
  "signature": "sha256:3f76c4dafe83129bfa41f6667339b27d23cec6e550015e787119c4ce10873761"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 10 Difraction"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.1 Page no 154"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "D=1                                   #Distance of screen from the slit in m\n",
      "w=6000                                #Wavelength in Angstrom\n",
      "w1=0.6                                #Slit width in mm\n",
      "\n",
      "#Calculations\n",
      "x=((2*D*w*10**-10)/(w1*10**-3))*1000\n",
      "\n",
      "#Output\n",
      "print\"Width of central band is \",x,\"mm\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Width of central band is  2.0 mm\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.2 Page no 155"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "d1=6000.0                             #Diffraction grating have number of lines per cm\n",
      "q=50                                  #Diffracted second order spectral line observed in degrees\n",
      "n=2                                   #Second order\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "w=(math.sin(q*3.14/180.0)/(d1*n))*10**8\n",
      "\n",
      "#Output\n",
      "print\"Wavelength of radiation is \",round(w,1),\"Angstrom\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Wavelength of radiation is  6381.3 Angstrom\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.3 Page no 155"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "d1=6000                      #Diffraction grating have number of lines per cm\n",
      "w=6000                       #Wavelength in Angstrom\n",
      "\n",
      "#Calculations\n",
      "n=(1/(d1*w*10**-8))\n",
      "\n",
      "#Output\n",
      "print\"Maximum order of diffraction that can be observed is \",round(n,2)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum order of diffraction that can be observed is  2.78\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.4 Page no 155"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "B=(3*3.14)/2                           #First secondary maxima at B\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "I=(math.sin(B)/B)**2\n",
      "\n",
      "#Output\n",
      "print\"Ratio of intensity of central maxima to first secondary maxima is \",round(I,3)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Ratio of intensity of central maxima to first secondary maxima is  0.045\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.5 Page no 155"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "w=6400                                        #Wave length of light in Angstrom\n",
      "w1=0.3                                        #Slit width in mm\n",
      "d=110                                         #Distance of screen from the slit in cm\n",
      "n=3                                           #order\n",
      "\n",
      "#Calculations\n",
      "x=((n*w*10**-10*(d/100.0))/(w1*10**-3))*1000\n",
      "\n",
      "#Output\n",
      "print\"Distance between the centre of the central maximum and the third dark fringe is \",x,\"mm\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Distance between the centre of the central maximum and the third dark fringe is  7.04 mm\n"
       ]
      }
     ],
     "prompt_number": 8
    }
   ],
   "metadata": {}
  }
 ]
}