summaryrefslogtreecommitdiff
path: root/Principles_of_Power_System/chapter7.ipynb
blob: bcb1dc3fe26a12e91a66efa87e14b66a1d0e7dd2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
{
 "metadata": {
  "name": "",
  "signature": "sha256:855ede77f42d7d38570b25f9dfe540c158b87984c52d22c6171f4226086950d9"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 7: Supply Systems"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.1, Page Number: 145"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from sympy import *\n",
      "\n",
      "#Variable declaration:\n",
      "V1 = 200                            #initial volt of system(V)\n",
      "V2 = 400                            #final volt of the system(V)\n",
      "\n",
      "\n",
      "#Calculation:\n",
      "I1,I2,R1,R2 = symbols('I1 I2 R1 R2')\n",
      "I2 = V1*I1/V2\n",
      "W1 = 2*I1**2*2*R1                        #Power loss in 200 V system\n",
      "W2 = 2*I2**2*2*R2                        #Power loss in 400 V system\n",
      "# As power loss in the two cases is the same,\n",
      "R22 = solve(W1/W2-1,R2)[0]\n",
      "a = R22/R1                               #ratio of cables' cross-section\n",
      "v = 1/a                                  #ratio of cables' volumes\n",
      "s = (1-v)*100\n",
      "\n",
      "#Result:\n",
      "print \"% Saving in feeder copper is \",s,\"%\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "% Saving in feeder copper is  75 %\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.2, Page Number: 146"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from sympy import *\n",
      "import math\n",
      "\n",
      "#Variable declaration:\n",
      "#P = power upplied,      W = power loss, \n",
      "#I = current,            V = voltage,     R = resistance\n",
      "\n",
      "R,V = symbols('R V')\n",
      "P1,I1,W1 = symbols('P1,I1,W1')    #for 2-wire system\n",
      "P2,I2,W2 = symbols('P2,I2,W2')     #for 3-wire system\n",
      "\n",
      "#Calculation:\n",
      "#Two-wire d.c. system:\n",
      "P1 = V*I1\n",
      "W1 = 2*I1**2*R\n",
      "L1 = W1/P1*100                    #% power loss\n",
      "\n",
      "#3-phase, 3-wire a.c. system:\n",
      "P2 = math.sqrt(3)*V*I2\n",
      "W2 = 3*I2**2*R\n",
      "L2 = W2/P2*100                     #% power loss\n",
      "\n",
      "I2 = solve(L1-L2,I2)[0]\n",
      "#r2 = P2/P1\n",
      "r2 = math.sqrt(3)*I2*V/(I1*V)\n",
      "P1 = 2*P2\n",
      "\n",
      "#Result:\n",
      "print '''Additional power which can be supplied at \n",
      "unity p.f. by 3-phase, 3-wire a.c. system = 100%.'''"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Additional power which can be supplied at \n",
        "unity p.f. by 3-phase, 3-wire a.c. system = 100%.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.3, Page Number: 146"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from sympy import *\n",
      "\n",
      "#Variable declaration:\n",
      "#Let R be the resistance per conductor in each case\n",
      "\n",
      "R,V = symbols('R V')\n",
      "P1,I1,W1 = symbols('P1,I1,W1')    #for 3-wire dc system\n",
      "P2,I2,W2 = symbols('P2,I2,W2')     #for 4-wire ac system\n",
      "\n",
      "#Calculation:\n",
      "\n",
      "#3-wire d.c. system.:\n",
      "#At balanced loads, implying no power loss in the neutral wire\n",
      "P1 = 2*V*I1\n",
      "W1 = 2*I1**2*R\n",
      "L1 = W1/P1*100                    #% power loss\n",
      "\n",
      "\n",
      "#3-phase, 4-wire a.c. system.:\n",
      "#At balanced loads, implying no power loss in the neutral wire\n",
      "P2 = 3*V*I2\n",
      "W2 = 3*I2**2*R\n",
      "L2 = W2/P2*100                     #% power loss\n",
      "\n",
      "I2 = solve(L1-L2,I2)[0]\n",
      "r = P2/P1\n",
      "#solving r, we get\n",
      "P2 = 1.5*P1\n",
      "\n",
      "#Result:\n",
      "print '''Extra power that can be supplied at unity power \n",
      "factor by 3-phase, 4-wire a.c. system = 50%.'''"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Extra power that can be supplied at unity power \n",
        "factor by 3-phase, 4-wire a.c. system = 50%.\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.4, Page Number: 148"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from sympy import *\n",
      "\n",
      "#Variable declaration:\n",
      "R,V,phy = symbols('R V phy')       #phy is power factor angle\n",
      "                                   #V is voltage between the conductors\n",
      "                                   #R is resistance per conductor \n",
      "P1,I1,W1 = symbols('P1,I1,W1')    #for Single phase 2-wire system\n",
      "P2,I2,W2 = symbols('P2,I2,W2')     #for 3-phase, 3-wire a.c. system\n",
      "\n",
      "\n",
      "#Calculation:\n",
      "#Single phase 2-wire system\n",
      "P1 = 2*V*I1*math.cos(phy)\n",
      "W1 = 2*I1**2*R\n",
      "L1 = W1/P1*100                    #% power loss\n",
      "\n",
      "#3-phase, 3-wire a.c. system. \n",
      "P2 = math.sqrt(3)*V*I2*math.cos(phy)\n",
      "W2 = 3*I2**2*R\n",
      "L2 = W2/P2*100                     #% power loss\n",
      "\n",
      "I22 = solve(L1-L2,I2)[0]\n",
      "r = P1/(math.sqrt(3)*V*I22*math.cos(phy))\n",
      "#As the power supplied by single phase, 2-wire is 200 kW,\n",
      "P1 = 200\n",
      "\n",
      "#Result:\n",
      "print \"Power supplied by 3-phase, 3-wire a.c. system is\",P1*r,\"kW\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Power supplied by 3-phase, 3-wire a.c. system is 400 kW\n"
       ]
      }
     ],
     "prompt_number": 38
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.5, Page Number: 149"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variable declaration:\n",
      "MVA = 5                   #power transmitted to load\n",
      "n = 0.9                   #efficiency\n",
      "pf = 0.8                  #power factor\n",
      "V = 33                    #receiving end voltage(V)\n",
      "l = 50*10**3             #length of line(m)\n",
      "s = 2.85*10**-8           #specific resistance of aluminium(ohm-m)\n",
      "\n",
      "#Calculation:\n",
      "P = MVA*pf*10**6                #power transmitted(W)\n",
      "W = 10*P/100                          #line loss(W)\n",
      "\n",
      "\n",
      "#(i) Single phase, 2-wire system:\n",
      "I1 = MVA*10**3/V                        #Apparent power(A)\n",
      "a1 = 2*I1**2*s*l/W                      #area of cross-section(m**2)\n",
      "v1= 2*a1*l                              #volume of conductor required(m**3)\n",
      "\n",
      "#(ii) 3-phase, 3-wire system:\n",
      "I2 = MVA*10**3/(math.sqrt(3)*V)                        #Apparent power(A)\n",
      "a2 = 3*I2**2*s*l/W                      #area of cross-section(m**2)\n",
      "v2 = 3*a2*l                              #volume of conductor required(m**3)\n",
      "\n",
      "#Result:\n",
      "print \"(i) Single phase, 2-wire system, Vol. of conductor required is\",round(v1,2),\"m^3\"\n",
      "print \"(ii)3-phase, 3-wire system, Vol. of conductor required\",round(v2,2),\"m^3\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) Single phase, 2-wire system, Vol. of conductor required is 16.36 m^3\n",
        "(ii)3-phase, 3-wire system, Vol. of conductor required 12.27 m^3\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.6, Page Number: 149"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable declaration:\n",
      "V1 = 11*10**3                   #Supply voltage(V)\n",
      "pf = 0.8\n",
      "R1 = 0.15                      #Total resistance in ac system(ohm)\n",
      "R2 = 0.05                      #Total resistance in dc system(ohm)\n",
      "r1 = 0.15                     #voltage drop in ac system(%)\n",
      "r2 = 0.25                     #voltage drop in dc system(%)\n",
      "\n",
      "#Calculation:\n",
      "#Single phase system:\n",
      "I1 = r1*V1/R1                   #line current(A)\n",
      "P1 = V1*I1*pf/1000              #power received by consumer(kW)\n",
      "\n",
      "#D.C. two-wire system:\n",
      "P2 = P1\n",
      "V2 = (P2*10**3*R2/r2)**0.5             #supply voltage(V)\n",
      "\n",
      "#Result:\n",
      "print \"The supply voltage is\",V2,\"V\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The supply voltage is 4400.0 V\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.7, Page Number: 153"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from sympy import *\n",
      "\n",
      "#Variable declaration:\n",
      "I = 200                      #current(A)\n",
      "l = 1                      #length of cable(km)\n",
      "c1 = 5                         #cost per unit(paise/kWh)\n",
      "r1 = 10                        #interrest & depreciation(%)\n",
      "ro = 1.73*10**-6              #resistivity(ohm-m)\n",
      "\n",
      "#Calculation:\n",
      "#If 'a' is the area os cross-section of the cnductor,\n",
      "#cost of cable including installation = (20*a + 20)    Rs./m.\n",
      "\n",
      "a = symbols('a')\n",
      "R = ro*l*10**5/a\n",
      "E = 2*I**2*R*8760/1000           #energy lost per annum\n",
      "C = c1/100*E                  #cost of energy lost(Rs)\n",
      "\n",
      "#capital cost for 1 km length of the cable is = Rs. 20,000*a.\n",
      "\n",
      "V = r1/100*20000*a             #Variable annual charge(Rs)\n",
      "a1 = solve(C-V,a)[1]\n",
      "\n",
      "#Result:\n",
      "print \"The most economical conductor size is\",round(a1,2),\"cm**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The most economical conductor size is 1.74 cm**2\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.8, Page Number: 153"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from sympy import *\n",
      "\n",
      "#Variable declaration:\n",
      "P = 5                           #line load(MW)]\n",
      "V = 33                          #kV\n",
      "pf = 0.8                        #power factor\n",
      "c1 = 4                          #paise/kWh\n",
      "r1 = 10                         #interest and depreciation(%)\n",
      "ro = 10**-6                     #ohm-cm\n",
      "\n",
      "\n",
      "#Calculation:\n",
      "a = symbols('a')                #size of conductor(cm**2)\n",
      "R = ro*l*10**5/a                #ohm\n",
      "I = P*10**3/(math.sqrt(3)*V*pf)            #current (A)\n",
      "E = 3*I**2*R*8760/1000           #kWh\n",
      "C = c1/100*E                        #Annual cost of energy lost(R)\n",
      "#The capital cost (variable) of the cable = 25000*a Rs/km\n",
      "V = r1/100*25000*a                 #Rs\n",
      "a1 = solve(C-V,a)[1]\n",
      "\n",
      "#Result:\n",
      "print \"The most economical size of conductor is\",round(a1,2),\"cm**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The most economical size of conductor is 0.71 cm**2\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.9, Page Number: 154"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from sympy import *\n",
      "\n",
      "#Variable declaration:\n",
      "I = 250                         #current through the feeder(A)\n",
      "c1 = 5                          #Rs/kg\n",
      "r1 = 10                         #interest and depreciation(%)\n",
      "c2 = 5                          #paise/kWh\n",
      "d = 8.93                        #density of wire(gm/cm**3)\n",
      "ro = 1.73*10**-8                #speciafic resistance(ohm-m)\n",
      "\n",
      "\n",
      "#Calculation:\n",
      "l = 1                           #length of wire(1 m say)\n",
      "a = symbols('a')                #conductor size(m**2)\n",
      "R = ro*l/a                      #ohm\n",
      "E = 2*I**2*R*8760/1000          #kWh\n",
      "C = c2/100*E                   #annual cost os energy lost(Rs)\n",
      "m = 2*a*1*d*10**3                     #Mass of 1 metre feeder\n",
      "CC = c1*m                    #capital cost(Rs)\n",
      "V = r1*CC/100                    #Variable Annual charge(Rs)\n",
      "a1 = solve(C-V)[1]\n",
      "\n",
      "#Result:\n",
      "print \"The most economic size of conductor is\",round(a1*10000,2),\"cm**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The most economic size of conductor is 3.26 cm**2\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.10, Page Number: 154"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from sympy import *\n",
      "\n",
      "#Variable declaration:\n",
      "l = 1                           #line length(km)\n",
      "V = 110                         #supply voltage(kV)\n",
      "\n",
      "#Working hours(hrs)          Load(MW)       Power factor\n",
      "t1 = 6;               P1 = 20 ;            pf1 = 0.8\n",
      "t2 = 12;              P2 = 5 ;             pf2 = 0.8\n",
      "t3 = 6;                P3 = 6 ;             pf3 = 0.8\n",
      "\n",
      "c1 = 6                  #\n",
      "n = 365                 #no.of days used\n",
      "r1 = 10                 #interest and dep-reciation(%)\n",
      "\n",
      "#Calculation:\n",
      "a = symbols(\"a\")                #cross-section of conductor(cm**2)\n",
      "R = 0.176/a                    #Resistance per km of each conductor(ohm)\n",
      "#The load currents at various loads are :\n",
      "#At 20 MW,\n",
      "I1 = P1*1000/(math.sqrt(3)*V*pf1)                #A\n",
      "I2 = P2*1000/(math.sqrt(3)*V*pf2)                #A\n",
      "I3 = P3*1000/(math.sqrt(3)*V*pf3)                #A\n",
      "\n",
      "E1= 3*R*1/1000*(I1**2*t1+I2**2*t2+I3**2*t3)      #Energy loss per day in 3-phase line(kWh)\n",
      "E = E1*n                        #energy lost per annum(kWh)\n",
      "C = c1*E/100                   #Annual cost of energy(Rs)\n",
      "v = r1*6000*a/100                  #variable annual charge(Rs/kWh)\n",
      "a1 = solve(C-v,a)[1]\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"THe most economical size of the conductor is\",round(a1,2),\"cm**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "THe most economical size of the conductor is 1.56 cm**2\n"
       ]
      }
     ],
     "prompt_number": 24
    }
   ],
   "metadata": {}
  }
 ]
}