1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
|
{
"metadata": {
"name": "",
"signature": "sha256:c36425eab1371d7c77f7bd1775095f254e3df888559e80a11117b968dfc1b5b4"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3: Principles of Power System"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.1, Page Number: 50"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration:\n",
"M = 100 #Maximum demand on power station(MW)\n",
"L = 0.40 #annual load factor\n",
"\n",
"#Calculation:\n",
"E = M*L*8760*10**6 #Energy generated in a year(kWh)\n",
"\n",
"#Results:\n",
"print \"Energy generated in a year is (\",E/10**8,\"* 10^5) kWh\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Energy generated in a year is ( 3504.0 * 10^5) kWh\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.2, Page Number: 50"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"L = 43 #connected load(MW)\n",
"M = 20 #Maximum demand(MW)\n",
"E = 61.5*10**6 #Units genearted per annum(kWh)\n",
"\n",
"#calculation:\n",
"DF = M/L #demand factor\n",
"LF = E/(M*8760*1000) #load factor\n",
"\n",
"#Results:\n",
"print \"The demand factor is\",round(DF,3)\n",
"print \"Load factor is \",round(LF*100,1),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The demand factor is 0.465\n",
"Load factor is 35.1 %\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.3, Page Number: 50"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"\n",
"#variable declaration:\n",
"\n",
"#power station delivers 100 MW for 2 hours, \n",
"#50 MW for 6 hours and is shut down for the rest\n",
"#of each day.\n",
"M = 100 #Maximum capacity of station(MW)\n",
"\n",
"\n",
"#Calculation:\n",
"E1 = 100*2+50*6 #Energy supplied per day(MWh)\n",
"n = 365-45 #No.of working days\n",
"LF = E1*320/(M*n*24) #load factor\n",
"\n",
"print \"Annual load factor is\",round(LF*100,1),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Annual load factor is 20.8 %\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.4, Page Number: 50"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"M = 25 #Maximum demand(MW)\n",
"LF = 0.60 #Load factor\n",
"PCF = 0.50 #plant capacity factor\n",
"PUF = 0.72 #plant use factor\n",
"\n",
"\n",
"#Calculations:\n",
"L = LF*M #Average load(MW)\n",
"PC = L/PCF #Plant gapacity(MW)\n",
"R = PC-M #Reserve capacity(MW)\n",
"E = L*24 #daily energy produced(MWh)\n",
"ME = E/PUF #Maximum energy produced(MWh/day)\n",
"\n",
"#Results:\n",
"print \"Reserve capacity is \",R,\"MW\"\n",
"print \"Daily energy produced is\",E,\"MWh\"\n",
"print \"Maximum energy that could be produced dauly is \",ME,\"MWh/day\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Reserve capacity is 5.0 MW\n",
"Daily energy produced is 360.0 MWh\n",
"Maximum energy that could be produced dauly is 500.0 MWh/day\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.5, Page Number: 51"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"M = 2500 #Maximum demand(kW)\n",
"E = 45*10**5 #kWh/year\n",
"\n",
"#Calculation:\n",
"D = (1500+750+100+450)/M #diversity factor\n",
"LF = E/(M*8760) #Annual load factor\n",
"\n",
"#Results:\n",
"print \"Diversity factor is\",D\n",
"print \"Annual load factor is\",round(LF*100,1),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Diversity factor is 1.12\n",
"Annual load factor is 20.5 %\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.6, Page Number: 51"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"M = 15000 #Max demand(kW)\n",
"LF = 0.50 #Annual load factor\n",
"PCF = 0.4 #Plant capacity factor\n",
"\n",
"\n",
"#Calculations:\n",
"L = LF*M #load factor(kW)\n",
"PC = L/PCF #plant capacity(kW)\n",
"R = PC-M #Reserve capacity(kW)\n",
"\n",
"#Results:\n",
"print \"The reserve capacity is \",R,\"kW\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The reserve capacity is 3750.0 kW\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.7, Page Number: 51"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"DFo = 1.35 #Overall diversity factor of system\n",
"\n",
"\n",
"\n",
"#Calculations:\n",
"M = (1500+2000+10000)/DFo #max demand(kW)\n",
"#for domestic load:\n",
"CL1 = (1500*1.2)/0.8 #kW\n",
"\n",
"#for Commercial load:\n",
"CL2 = 2000*1.1/0.9 #kW\n",
"\n",
"#for Industrial load:\n",
"CL3 = 10000*1.25/1 #kW\n",
"\n",
"\n",
"#Results:\n",
"print \"Maximum demand is \",M,\"kW\"\n",
"print \"Connected loads for each type are:\"\n",
"print CL1,\"kW \",round(CL2),\"kW \",CL3,\"kW\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum demand is 10000.0 kW\n",
"Connected loads for each type are:\n",
"2250.0 kW 2444.0 kW 12500.0 kW\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.8, Page Number: 52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration:\n",
"Dt = 1.3 #Diversity among transformers\n",
"\n",
"\n",
"#Calculation:\n",
"#for transformer 1:\n",
"M1 = (10*0.65)/1.5 #Max demand (kW)\n",
"\n",
"#for transformer 2:\n",
"M2 = (12*0.6)/3.5 #max demand(kW)\n",
"\n",
"#for transformer:\n",
"M3 = (15*0.7)/1.5 #max demand(kW)\n",
"\n",
"Mf = (M1+M2+M3)/Dt #Maximum demand on feeder(kW)\n",
"\n",
"#Results:\n",
"print \"Maximum load on the feeder is \",round(Mf,1),\"kW\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum load on the feeder is 10.3 kW\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.9, Page Number: 52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration:\n",
"n1 = 1000 #No of houses\n",
"CL1 = 1.5 #Avg connected load in each house(kW)\n",
"DF1 = 0.4 #Demand factor\n",
"DvF = 2.5 #Diversity factor\n",
"\n",
"n2 = 10 #no. of factories\n",
"M2 = 90 #factory overall max demand(kW)\n",
"\n",
"n3 = 7 #no of tubewells\n",
"C3 = 7 #capacity of tubewells(kW)\n",
"\n",
"DF = 1.2 #Diversity factor among above types of consumers\n",
"\n",
"#Calculations:\n",
"Ms = ((DF1*n1*CL1)/DvF)+M2+n3*C3 #Sum of maximum demand on the station(kW)\n",
"M = Ms/DF #maximum demand on the station(kW)\n",
"\n",
"#Results:\n",
"print \"Minimum capacity on the power station is\",round(M),\"kW\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Minimum capacity on the power station is 316.0 kW\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.10, Page Number: 53"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"%matplotlib inline\n",
"\n",
"\n",
"#Calculations:\n",
"M = 70.0 #Max demand, from load curve(MW)\n",
"E = 40*6+50*4+60*2+50*4+70*4+40*4 #Units generated per day(MWh)\n",
"L = E/24 #Avg load(MW)\n",
"LF = L/M #Load factor\n",
"\n",
"n1 = linspace(0,6,10);\n",
"M1 = linspace(40,40,10);\n",
"plot(n1,M1);\n",
"hold(True);\n",
"\n",
"n2 = linspace(6,10,10);\n",
"M2 = linspace(50,50,10);\n",
"plot(n2,M2,'b');\n",
"\n",
"n3 = linspace(10,12,10);\n",
"M3 = linspace(60,60,10);\n",
"plot(n3,M3,'b');\n",
"\n",
"n4 = linspace(12,16,10);\n",
"M4 = linspace(50,50,10);\n",
"plot(n4,M4,'b');\n",
"\n",
"n5 = linspace(16,20,10);\n",
"M5 = linspace(70,70,10);\n",
"plot(n5,M5,'b');\n",
"\n",
"n6 = linspace(20,24,10);\n",
"M6 = linspace(40,40,10);\n",
"plot(n6,M6,'b');\n",
"\n",
"ylim(0,100);\n",
"xlim(0,24);\n",
"grid(1,linewidth=0.5);\n",
"ylabel(\"Load in MW ------>\");\n",
"xlabel(\"Time in hours ----->\");\n",
"title(\"Daily Load Curve\")\n",
"\n",
"#Results:\n",
"print \"Maximum demand is \",M,\"MW\"\n",
"print \"Units generated per day is (\",E/100,\"* 10^5) kWh\"\n",
"print \"Average load is\",L*1000,\"kW\"\n",
"print \"Load factor is \",round(LF*100,1),\"%\"\n",
"print \"The Daily load curve is shown below:\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"Maximum demand is "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 70.0 MW\n",
"Units generated per day is ( 12.0 * 10^5) kWh\n",
"Average load is 50000.0 kW\n",
"Load factor is 71.4 %\n",
"The Daily load curve is shown below:\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEZCAYAAABxbJkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX6B/DPQbFUlkGSRVDHzA0X0JQsN7iIpalpKmqJ\ngMpNy4qszPxZqXVzquuWWderKFwxlWtdJVAsS0zFJQvTRMWFUURAExCVXMDz+4OcxDkzMMAszvfz\nfr14yRlm5jx8muZhvs+cM5IsyzKIiEhIDtYugIiIrIdNgIhIYGwCREQCYxMgIhIYmwARkcDYBIiI\nBMYmQPe9s2fPwtnZGXfe7RwUFITY2FgrV2WYg4MDTp8+be0yiACwCZANUKvVaNSoEVxcXODm5oZe\nvXph2bJlqO4hLC1atMCVK1cgSRIAQJIk3femiIuLQ58+fUy+XV3bunUr+vbtCxcXF3h4eCAoKAjf\nfPONtcsiO8UmQFYnSRKSk5NRUlKCs2fPYsaMGfjoo48wceJEa5dmcRs2bEBYWBgiIyORm5uLCxcu\nYO7cuTVqArIsV7uRkrjYBMimODs7Y8iQIVi/fj3i4+Nx5MgRAEBKSgq6du0KV1dXtGjRAnPmzNHd\nRqvVwsHBAbdv3650Xzdv3kSTJk3w22+/6S67cOECGjdujEuXLplUV3p6Onr06AGVSoXAwEDs2bNH\n97NVq1bBz88PLi4uaN26Nf79739Xuu0nn3yCZs2awdfXFytXrjS4D1mWMW3aNLz77ruYMGECnJ2d\nAQB9+/bV3efs2bMRHh5u8HcPCgrCrFmz0KtXLzRu3BiffPIJevToUWk/CxcuxDPPPAMAuHHjBt54\n4w20bNkSXl5emDJlCq5fv25SNnR/YxMgm9SjRw/4+vpi165dAAAnJyckJCTg8uXLSElJwRdffIFN\nmzYZvY8GDRpg7NixSEhI0F22du1a9O/fH+7u7tWupbCwEE8//TRiYmJQWFiIadOm4emnn0ZhYSEA\nwNPTEykpKSgpKcGqVavw2muvISMjAwCQmpqK+fPnY9u2bcjKysK2bdsM7uf48eM4d+4cRo4cafA6\n1VnmSkhIwIoVK3D16lVMnjwZx48fx8mTJ3U///LLL/H8888DAGbMmIGTJ0/i119/xcmTJ5Gbm4u5\nc+dWKxeyD2wCZLOaNWume6Lt168fOnbsCADo3LkzxowZgx07dlR5H+PHj8fatWt126tXr670l3R1\npKSkoF27dnj++efh4OCAMWPGoH379rolmkGDBqFVq1YAKv5qHzBgAHbu3AkASExMxIQJE+Dn54dG\njRpVegVzrzuvTry9vQ1ep6rlHUmSEBkZiQ4dOsDBwQEuLi545plndBmcOHECx48fx9ChQyHLMpYv\nX44FCxZApVLByckJb7/9NtatW1f9cOi+xyZANis3NxdNmjQBAOzbtw/BwcHw8PCASqXCsmXLqrWk\n89hjj6Fhw4ZIS0vDsWPHcOrUKQwdOtSkOs6fP48WLVpUuqxly5Y4f/48AGDLli3o2bMn3N3d4ebm\nhs2bN+tqy8vLQ/PmzXW3u/d+7nbn1UleXp5J9d3r7v0BwHPPPadrAl9++SWGDx+OBx98EBcvXkRp\naSkeffRRuLm5wc3NDQMHDsTvv/9eq/3T/YVNgGzSTz/9hNzcXPTu3RtAxRPZsGHDcO7cORQXF2Py\n5Ml6MwBDIiIikJCQgNWrV2PUqFFo0KCBSbX4+PjgzJkzlS47c+YMfHx8cOPGDYwYMQLTp0/HhQsX\nUFRUhEGDBun+Yvf29sbZs2d1t7v7+3u1a9cOzZs3x4YNGwxex8nJCaWlpbrt/Px8vevcu2TUv39/\nXLx4Eb/++ivWrVuH5557DgDw0EMPoWHDhsjMzERRURGKiopQXFyMkpISI2mQvWETIJtw50mzpKQE\nycnJGDt2LMLDw3VLQFevXoWbmxsaNGiA/fv348svvzS6Pn73ssm4cePw9ddfY82aNRg/fnyVddy4\ncQPXr1/XfQ0aNAhZWVlYu3YtysrKsH79ehw7dgyDBw/GzZs3cfPmTTz00ENwcHDAli1b8O233+ru\nLywsDHFxcTh69ChKS0uNLgdJkoQFCxbg/fffR1xcHEpKSnD79m3s2rULL7zwAgDA398fP/74I3Jy\ncnD58mXMmzfP6O8OAI6Ojhg1ahTeeOMNFBUVITQ0FEDF8QrR0dGIiYnBxYsXAVS8+rq7fhKATGRl\narVabtiwoezs7Cy7urrKTzzxhPz555/Lt2/f1l1nw4YNcsuWLWVnZ2d58ODB8ssvvyyHh4fLsizL\n2dnZsoODg1xeXi7LsiwHBQXJsbGxlfYREhIit2rVymgdcXFxsiRJlb7u3O+uXbvkRx99VHZ1dZW7\nd+8u7969W3e7pUuXyp6enrJKpZLDw8PlsWPHyu+8847u5xqNRvby8pJ9fHzklStXyg4ODvKpU6cM\n1pGamir36dNHdnJykps2bSoHBwfLmzdv1v38pZdeklUqldymTRt5+fLlVf7usizLO3fulCVJkqdO\nnVrp8uvXr8szZ86UH374YdnFxUXu0KGDvGTJEqM5kX2RZNk8bySeMGECUlJS4OHhgcOHDwOoeJfF\n6NGjcebMGajVaiQmJkKlUgEA5s2bh5UrV6JevXr49NNPMWDAAHOURYKaOHEifHx8+M4XonuYbTko\nKioKqamplS7TaDQIDQ1FVlYWQkJCoNFoAACZmZlYv349MjMzkZqaihdffLHa671EVdFqtfj666+F\nPPiMqCpmawJ9+vSBm5tbpcuSkpIQEREBoGJYt3HjRgDApk2bMHbsWDg6OkKtVuORRx7B/v37zVUa\nCeSdd95B586dMX36dLRs2dLa5RDZHIsOhgsKCuDp6Qmg4gCbgoICABVvwfP19dVdz9fXF7m5uZYs\njezU+++/jytXruDtt9+2dilENslq7w6q6iRfNTkBGBERmaa+JXfm6emJ/Px8eHl5IS8vDx4eHgAq\n3oedk5Oju965c+fg4+Ojd3sfHx/dATpERFQ9/v7+OHjwoOLPLPpKYOjQoYiPjwcAxMfHY9iwYbrL\n161bh5s3byI7OxsnTpxAYGCg3u3Pnz+vOzMiv/76eu+996xegy1+MRfmwkwqvn799VeDz8tmeyUw\nduxY7NixA7///juaN2+OuXPnYsaMGQgLC0NsbKzuLaIA4Ofnh7CwMPj5+aF+/fr4/PPPuRxkAq1W\na+0SbBJzUcZc9ImcidmawN0n7bqbobMozpw5EzNnzjRXOUREpICnjbADkZGR1i7BJjEXZcxFn8iZ\nmO2IYXOQJAn3UblERDbB2HMnXwnYgbS0NGuXYJOYizLmok/kTNgEiIgExuUgIiI7x+UgIiJSxCZg\nB0RezzSGuShjLvpEzoRNgIhIYJwJEBHZOc4EiIhIEZuAHRB5PdMY5qKMuegTORM2ASIigXEmQERk\n5zgTICIiRWwCdkDk9UxjmIsy5qJP5EzYBIiIBMaZABGRneNMgIiIFLEJ2AGR1zONYS7KmIs+kTNh\nEyAiEhhnAkREdo4zASIiUsQmYAdEXs80hrkoYy76RM6ETYCISGCcCRAR2TnOBIiISBGbgB0QeT3T\nGOaijLnoEzkTNgEiIoFxJkBEZOc4EyAiIkVsAnZA5PVMY5iLMuaiT+RM2ASIiATGmQARkZ3jTICI\niBSxCdgBkdczjWEuypiLPpEzYRMgIhKYVWYC8+bNQ0JCAhwcHNC5c2esWrUK165dw+jRo3HmzBmo\n1WokJiZCpVJVLpYzASIik9nUTECr1WL58uX45ZdfcPjwYZSXl2PdunXQaDQIDQ1FVlYWQkJCoNFo\nLF0aEZFwLN4EXFxc4OjoiNLSUpSVlaG0tBTNmjVDUlISIiIiAAARERHYuHGjpUu7b4m8nmkMc1HG\nXPSJnInFm0CTJk3w+uuvo0WLFmjWrBlUKhVCQ0NRUFAAT09PAICnpycKCgosXRoRkXDqW3qHp06d\nwqJFi6DVauHq6opRo0YhISGh0nUkSYIkSYq3j4yMhFqtBgCoVCoEBAQgKCgIwF/dnNvcviMtLc1m\n6uG27W4HBQXZVD213U5LS0NcXBwA6J4vDbH4YHj9+vX47rvvsGLFCgDA6tWrsXfvXvzwww/Yvn07\nvLy8kJeXh+DgYBw7dqxysRwMExGZzKYGw+3bt8fevXvxxx9/QJZlbNu2DX5+fhgyZAji4+MBAPHx\n8Rg2bJilS7tv3fkLgCpjLsqYiz6RM7H4cpC/vz/Gjx+P7t27w8HBAd26dcPf//53XLlyBWFhYYiN\njdW9RZSIiMyL5w4iIrJzNrUcREREtoNNwA6IvJ5pDHNRxlz0iZwJmwARkcA4EyAisnOcCRARkSI2\nATsg8nqmMcxFGXPRJ3ImbAJERALjTICIyM5xJkBERIrYBOyAyOuZxjAXZcxFn8iZsAkQEQmMMwEi\nIjvHmQARESliE7ADIq9nGsNclDEXfSJnwiZARCQwzgSIiOxcncwE8vPzcfv27TorioiIrK9aTaCw\nsBCtWrVCUlKSueuhGhB5PdMY5qKMuegTOZNqNYE1a9YgNDQUsbGx5q6HiGyUJNnvV3CwtdO1nmrN\nBLp164ZNmzZhyJAh2LJlC7y9vS1Rmx7OBIiITFermcCBAwfQtGlTNG/eHOHh4YiLi6vr+oiIyEqq\nbAIrVqzAhAkTAADh4eH4z3/+Y/aiyDQir2caw1yUMRd9ImditAlcu3YNW7duxfDhwwEAHh4eaNeu\nndCBERHZE6MzgVu3bqGwsBCenp66y0pKSgAALi4u5q/uHpwJEBGZrsYzAUdHx0oNIDk5GS4uLlZp\nAEREVPdMOm3EO++8Y646qBa4PKeMuShjLvpEzoTnDiIiEphJ5w7av38/AgMDzVmPUZwJEBGZrs4+\nT2DFihV1UhAREdkGk5rATz/9ZK46qBZEXs80hrkoYy76RM7EpCbg4eFhrjqIiMgKTJoJ5OXlWe28\nQQBnAkRENVFnM4Gnn366TgoiIiLbYFIT4F/htknk9UxjmIsy5qJP5ExMagLR0dHmqoOIiKzApCZQ\nr169OtlpcXExRo4ciQ4dOsDPzw/79u1DYWEhQkND0bZtWwwYMADFxcV1si8RBAUFWbsEm8RclDEX\nfSJnYlIT+Ne//lUnO3311VcxaNAgHD16FIcOHUL79u2h0WgQGhqKrKwshISEQKPR1Mm+iIjIMIvP\nBC5fvoydO3fqPqOgfv36cHV1RVJSEiIiIgAAERER2LhxY633JQqR1zONYS7KmIs+kTMxqQkkJyfX\neofZ2dlo2rQpoqKi0K1bN0RHR+PatWsoKCjQnbHU09MTBQUFtd4XEREZZ9JxAoMHD651Izhw4AAe\nf/xxpKeno0ePHoiJiYGzszM+++wzFBUV6a7XpEkTFBYWVi6WxwkQEZnM2HNnfVPuKDc3t9bF+Pr6\nwtfXFz169AAAjBw5EvPmzYOXlxfy8/Ph5eWFvLw8g0cnR0ZGQq1WAwBUKhUCAgJ0Q507L+m4zW0A\nkKSKbSDoz3/Nv719u+38/twWdzstLU33efB3ni8NMemVwIQJE7By5crqXt2gvn37YsWKFWjbti1m\nz56N0tJSAIC7uzveeustaDQaFBcX6w2H+UpAWVpamu6BQH9hLsqYiz57z6TOXgm89NJLdVLQkiVL\n8Pzzz+PmzZto3bo1Vq1ahfLycoSFhSE2NhZqtRqJiYl1si8iIjLMpFcC3bp1wy+//GLOeoziKwEi\nItPV2bmD+ARMRGRfTGoC7733nrnqoFq4MxCiypiLMuaiT+RMTGoCw4YNM1cdRERkBSbNBKyNMwEi\nItPV2UyAiIjsC5uAHRB5PdMY5qKMuegTORM2ASIigXEmQERk52o0E1i4cCH279+PsrIysxVGRETW\nZbAJnDt3DjExMWjatCn69u2LmTNnIjk5We/MnmR9Iq9nGsNclDEXfSJnYvDcQfPnzwcA3LhxAwcO\nHMCePXuwcuVKREdHQ6VS4ejRoxYrkoiIzKPKmUBxcTH27NmD9PR0pKeno7i4GF26dMGqVassVaMO\nZwJERKYz9txpsAlER0cjMzMTzs7OCAwMxOOPP46ePXvCzc3NrMUawyZARGS6Gg2Gz549ixs3bsDL\nyws+Pj7w8fGBSqUyW5FUcyKvZxrDXJQxF30iZ2JwJrB161bcvn0bR44cwZ49e7BgwQIcPnwY7u7u\n6NmzJ+bOnWvJOomIyAyqdZxATk4O0tPTsXv3biQnJ+PSpUu4fPmyJeqrhMtBRESmq9FMYPHixUhP\nT8eePXtQv359PPHEE+jVqxeeeOIJdOrUCfXq1TNr0UrYBIiITFejmYBWq0VYWBj27t2L06dPIyEh\nAVOmTIG/v79VGgAZJvJ6pjHMRRlz0SdyJgZnArNmzQJQ0UGUDhBr0qSJ+aoii5Aka1dgfpZ84cg8\n6X5kcDnIwcEBvr6+in/1S5KE06dPm704pf1yOYiIyDTGnjsNvhJ45ZVX8MMPP6B3794YM2YM+vTp\nA0mEP3WIiARicCawaNEiHDx4ECNHjkRCQgICAgLw5ptvIjs725L1UTWIvJ5pDHNRxlz0iZyJ0c8T\ncHBwwN/+9jd8/PHHmDx5MuLi4vDdd99ZqjYiIjIzgzOBq1evYtOmTVi/fj0uXryIZ599FqNHj0aL\nFi0sXaMOZwJERKar0XECjRs3Rps2bTB69Gi0bdu20h1JkoRnn33WfBUbwCZARGS6GjWByMhIo4Ng\nnkXUdqSlpSEoKMjaZdgc5qKMueiz90xq9O6guLg4c9VDREQ2gp8xTERk52p02ggiIrJ/bAJ2QOT3\nOBvDXJQxF30iZ2JwJnC33bt3Q6vVoqysDEDFS4vx48ebtTAiIjK/KmcC48aNw+nTpxEQEFDpPEJL\nliwxe3H34kyAiMh0NXqL6B0dOnRAZmamTZw3iE2AiMh0tRoMd+rUCXl5eXVeFNUdkdczjWEuypiL\nPpEzqXImcPHiRfj5+SEwMBAPPPAAgIqukpSUZPbiiIjIvKpcDjLUIa1xdB2Xg4iITFermYC5lJeX\no3v37vD19cU333yDwsJCjB49GmfOnIFarUZiYiJUKlXlYtkEiIhMVqOZQK9evQAATk5OcHZ2rvTl\n4uJS66IWL14MPz8/3cBZo9EgNDQUWVlZCAkJgUajqfU+RCHyeqYxzEUZc9EnciYGm8Du3bsBVJxS\n+sqVK5W+SkpKarXTc+fOYfPmzZg0aZKuOyUlJSEiIgIAEBERgY0bN9ZqH0REVDWrLAeNGjUKM2fO\nRElJCf75z3/im2++gZubG4qKigAAsiyjSZMmum1dsVwOIiIymU2dOyg5ORkeHh7o2rWr4UGFJNnE\ncQlERPauWqeNqEvp6elISkrC5s2bcf36dZSUlCA8PByenp7Iz8+Hl5cX8vLy4OHhoXh7SYoEoP5z\nSwUgAEDQn9tpf/4r2vady0y//fbtf73T6866qL1sL1q0CAEBATZTj61s37nMVuqxhW1Jqvi+QtCf\n/6bdx9tpAOL+3FbDGKueSnrHjh265aDp06fD3d0db731FjQaDYqLi/WGw1wOUmbvH4hRU8xFGXPR\nZ++Z1Ogtok5OTgaXZCRJqvVwGKhoAvPnz0dSUhIKCwsRFhaGs2fP8i2iRER1qFbHCcyaNQvNmjXD\nuHHjAABr1qzB+fPn8f7779d9pVVgEyAiMl2tBsNJSUl48cUX4eLiAhcXF0yZMgWbNm2q8yKp5kR+\nj7MxzEUZc9EnciZVNoHGjRsjISEB5eXlKC8vx5o1a+Dk5GSJ2oiIyMyqXA7Kzs7Gq6++ivT0dAAV\nRxIvXrwYarXaEvVVwuUgIiLT2eS5g2qCTYCIyHTGnjurPE7gjz/+QGxsLDIzM3H9+nXd5StXrqy7\nCqlW7P3tbTXFXJQxF30iZ1LlTCA8PBwFBQVITU1Fv379kJOTw5kAEZGdqHI5KCAgAAcPHkSXLl1w\n6NAh3Lp1C71798a+ffssVaMOl4OIiExXq7eINmjQAADg6uqKw4cPo7i4GBcvXqzbComIyCqqbALR\n0dEoLCzEBx98gKFDh8LPzw/Tp0+3RG1UTSK/x9kY5qKMuegTOZMqB8PR0dEAgH79+iE7O9vsBRER\nkeVUORMoLi7GnDlz8OOPPwKoOOPeu+++C1dXV4sUeDfOBIiITFermcCECRPg4uKC//73v0hMTISz\nszOioqLqvEgiIrK8KpvAqVOnMGfOHDz88MNo3bo1Zs+ejVOnTlmiNqomkdczjWEuypiLPpEzqbIJ\nNGzYEDt37tRt79q1C40aNTJrUUREZBlVzgQOHjyI8ePH4/LlywAANzc3xMfHw9/f3yIF3o0zASIi\n09XJuYPuNAFXV1csWrQIMTExdVdhNbEJEBGZrk4+aN7V1VX3jqD58+fXTWVUJ0RezzSGuShjLvpE\nzqTaTYCIiOxPjU4l3bx5c+Tk5JijHqO4HEREZLoanUra2AfNl5aW1k1lRERkVQaXg65evYorV64o\nfpWXl1uyRqqCyOuZxjAXZcxFn8iZcCZARCQwfrwkEZGdq5O3iBIRkf1hE7ADIq9nGsNclDEXfSJn\nwiZARCQwzgSIiOwcZwJERKSITcAOiLyeaQxzUcZc9ImcCZsAEZHAOBMgIrJznAkQEZEiNgE7IPJ6\npjHMRRlz0SdyJmwCREQC40yAiMjOcSZARESKLN4EcnJyEBwcjI4dO6JTp0749NNPAQCFhYUIDQ1F\n27ZtMWDAABQXF1u6tPuWyOuZxjAXZcxFn8iZWLwJODo6YuHChThy5Aj27t2LpUuX4ujRo9BoNAgN\nDUVWVhZCQkKg0WgsXRoRkXCsPhMYNmwYpk6diqlTp2LHjh3w9PREfn4+goKCcOzYsUrX5UyAiMh0\nxp47rdoEtFot+vXrh99++w0tWrRAUVERAECWZTRp0kS3fQebABGR6Wr0QfPmdvXqVYwYMQKLFy+G\ns7NzpZ9JkmTwQ+4jIyOhVqsBACqVCgEBAQgKCgLw17qeaNt3LrOVemxle9GiRXx8KGzfucxW6rGF\n7XuzsXY9dfH7xMXFAYDu+dIQq7wSuHXrFgYPHoyBAwciJiYGANC+fXukpaXBy8sLeXl5CA4O5nJQ\nNaWlpekeCPQX5qKMueiz90xsajlIlmVERETA3d0dCxcu1F0+ffp0uLu746233oJGo0FxcbHecJhN\ngIjIdDbVBHbt2oW+ffuiS5cuuiWfefPmITAwEGFhYTh79izUajUSExOhUqkqF8smQERkMptqArXB\nJqDM3l/K1hRzUcZc9Nl7JjximIiIFPGVABGRneMrASIiUsQmYAfufo8z/YW5KGMu+kTOhE2AiEhg\nnAkQEdk5zgSIiEgRm4AdEHk90xjmooy56BM5EzYBIiKBcSZARGTnOBMgIiJFbAJ2QOT1TGOYizLm\nok/kTNgEiIgExpkAEZGd40yAiIgUsQnYAZHXM41hLsqYiz6RM2ETICISGGcCRER2jjMBIiJSxCZg\nB0RezzSGuShjLvpEzoRNgIhIYJwJEBHZOc4EiIhIEZuAHRB5PdMY5qKMuegTORM2ASIigXEmQERk\n5zgTICIiRWwCdkDk9UxjmIsy5qJP5EzYBIiIBMaZABGRneNMgIiIFLEJ2AGR1zONYS7KmIs+kTNh\nEyAiEhhnAkREdo4zASIiUmRTTSA1NRXt27dHmzZt8NFHH1m7nPuGyOuZxjAXZcxFn8iZ2EwTKC8v\nx9SpU5GamorMzEysXbsWR48etXZZ94WDBw9auwSbxFyUMRd9ImdiM01g//79eOSRR6BWq+Ho6Igx\nY8Zg06ZN1i7rvlBcXGztEmwSc1HGXPSJnInNNIHc3Fw0b95ct+3r64vc3FwrVkREZP9spglIkmTt\nEu5bWq3W2iXYJOaijLnoEzmT+tYu4A4fHx/k5OTotnNycuDr61vpOq1bt2azMCA+Pt7aJdgk5qKM\nueiz50z8/f0N/sxmjhMoKytDu3bt8P3336NZs2YIDAzE2rVr0aFDB2uXRkRkt2zmlUD9+vXx2Wef\n4cknn0R5eTkmTpzIBkBEZGY280qAiIgsz2YGw1XhgWTK1Go1unTpgq5duyIwMNDa5VjNhAkT4Onp\nic6dO+suKywsRGhoKNq2bYsBAwYI9zZApUxmz54NX19fdO3aFV27dkVqaqoVK7SOnJwcBAcHo2PH\njujUqRM+/fRTAOI+Xu6LJsADyQyTJAlpaWnIyMjA/v37rV2O1URFRek9oWk0GoSGhiIrKwshISHQ\naDRWqs46lDKRJAnTpk1DRkYGMjIy8NRTT1mpOutxdHTEwoULceTIEezduxdLly7F0aNHhX283BdN\ngAeSGccVPaBPnz5wc3OrdFlSUhIiIiIAABEREdi4caM1SrMapUwAPl68vLwQEBAAAHByckKHDh2Q\nm5sr7OPlvmgCPJDMMEmS0L9/f3Tv3h3Lly+3djk2paCgAJ6engAAT09PFBQUWLki27BkyRL4+/tj\n4sSJwix5GKLVapGRkYHHHntM2MfLfdEEeGyAYbt370ZGRga2bNmCpUuXYufOndYuySZJksTHEYAp\nU6YgOzsbBw8ehLe3N15//XVrl2Q1V69exYgRI7B48WI4OztX+plIj5f7oglU50AyUXl7ewMAmjZt\niuHDhws9F7iXp6cn8vPzAQB5eXnw8PCwckXW5+HhoXuCmzRpkrCPl1u3bmHEiBEIDw/HsGHDAIj7\neLkvmkD37t1x4sQJaLVa3Lx5E+vXr8fQoUOtXZbVlZaW4sqVKwCAa9eu4dtvv630ThDRDR06VHcU\naHx8vO5/dpHl5eXpvv/f//4n5ONFlmVMnDgRfn5+iImJ0V0u7ONFvk9s3rxZbtu2rdy6dWv5ww8/\ntHY5NuH06dOyv7+/7O/vL3fs2FHoXMaMGSN7e3vLjo6Osq+vr7xy5Ur50qVLckhIiNymTRs5NDRU\nLioqsnaZFnVvJrGxsXJ4eLjcuXNnuUuXLvIzzzwj5+fnW7tMi9u5c6csSZLs7+8vBwQEyAEBAfKW\nLVuEfbzwYDEiIoHdF8tBRERkHmwCREQCYxMgIhIYmwARkcDYBIiIBMYmQEQkMDYBsppLly7pTmns\n7e2tO8VgaeccAAAEiElEQVSxs7Mzpk6dWuf7W7ZsGVavXl3t66elpWHIkCF1XgeRLbGZTxYj8bi7\nuyMjIwMAMGfOHDg7O2PatGlm298LL7xgtvs2RVlZGerXt/7/esXFxVCpVNYug6yMrwTIZtw5bvHu\nv8Bnz56NiIgI9O3bF2q1Gl9//TXeeOMNdOnSBQMHDkRZWRkA4Oeff0ZQUBC6d++Op556SncOmLvN\nnj0b8+fPBwAEBQVhxowZeOyxx9CuXTvs2rVL7/qSJOHq1asYNWoUOnTogHHjxul+9v3336Nbt27o\n0qULJk6ciJs3bwKo+JCfwsJCAMCBAwcQHBys23d4eDh69+6NiIgIHDlyBIGBgejatSv8/f1x8uTJ\nuoqx2tatW4fOnTtjwYIF+P333y2+f7INbAJk87Kzs7F9+3YkJSVh3LhxCA0NxaFDh9CwYUOkpKTg\n1q1bePnll/HVV1/hwIEDiIqKwv/93//p3c/dZ4aUJAnl5eXYt28fFi1ahDlz5uhdX5ZlZGRkYPHi\nxcjMzMTp06eRnp6O69evIyoqComJiTh06BDKysrwxRdf6O7XkGPHjuH777/HmjVrsGzZMsTExCAj\nIwM///yzVU6IOHnyZGzZsgWlpaXo27cvRo0aha1btwr/eQOiYRMgmyZJEgYOHIh69eqhU6dOuH37\nNp588kkAQOfOnaHVapGVlYUjR46gf//+6Nq1K/7xj39U6/Mmnn32WQBAt27doNVqFa8TGBiIZs2a\nQZIkBAQEIDs7G8ePH0erVq3wyCOPAKj4AJIff/yxyt9j6NCheOCBBwAAjz/+OD788EN8/PHH0Gq1\nePDBB6sbSZ3y9fXFrFmzkJmZiaioKERFRWH48OFWqYWsw/oLk0RVaNCgAQDAwcEBjo6OussdHBxQ\nVlYGWZbRsWNHpKenm3S/d56Q69Wrp1tWMnSdu69371/7sizrLqtfvz5u374NALh+/Xql6zVq1Ej3\n/dixY9GzZ08kJydj0KBBWLZsmW7pyJicnBzdGXQnT56M8vJyLF++HJIkISUlBZGRkbhw4QJ69OiB\nSZMm6eYgc+fOxb59+5CSkgJJkvDLL7/o7nP//v1YtWoVtm3bhjFjxiA6OrrKOsh+sAmQTavO0kS7\ndu1w8eJF7N27Fz179sStW7dw4sQJ+Pn51ej+jJEkCe3atYNWq8WpU6fQunVrrF69Gv369QNQMRM4\ncOAAnnrqKXz11VcG95udnY1WrVrh5ZdfxtmzZ3H48OFqNYHmzZvrhul3vPjii7rvt27dWulnd193\nyJAh+OCDD3Tb3377Ld588014e3tj0qRJWLJkiU0MrMmy+F+cbMbd6/VK3999nbu3HR0dsWHDBrzy\nyiu4fPkyysrK8Nprryk2AUNr9kqXG/p0qQceeACrVq3CqFGjUFZWhsDAQEyePBkA8N5772HixIlw\ncXFBUFCQwd8jMTERq1evhqOjI7y9vRVnGOb20EMPITk5udJHt5J4eCppIiKBcTBMRCQwNgEiIoGx\nCRARCYxNgIhIYGwCREQCYxMgIhIYmwARkcDYBIiIBPb/pozSJIWf61MAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x4a7dfb0>"
]
}
],
"prompt_number": 31
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.11, Page Number: 54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"%matplotlib inline\n",
"\n",
"#Calculation:\n",
"M = 350.0 #Maximum demand(kW)\n",
"DF = (200+100+50+100)/M #Diversity factor\n",
"E = 100*6+(100+50)*2+(200+100+50)*2+(200+100)*8+100*6 #kWh/day\n",
"LF = E/(24*M) #load factor\n",
"\n",
"n1 = linspace(0,6,10);\n",
"M1 = linspace(100,100,10);\n",
"plot(n1,M1);\n",
"\n",
"\n",
"hold(True);\n",
"\n",
"n2 = linspace(6,8,10);\n",
"M2 = linspace(150,150,10);\n",
"plot(n2,M2,'b');\n",
"\n",
"n3 = linspace(8,10,10);\n",
"M3 = linspace(350,350,10);\n",
"plot(n3,M3,'b');\n",
"\n",
"n4 = linspace(10,18,10);\n",
"M4 = linspace(300,300,10);\n",
"plot(n4,M4,'b');\n",
"\n",
"n5 = linspace(18,24,10);\n",
"M5 = linspace(100,100,10);\n",
"plot(n5,M5,'b');\n",
"\n",
"ylim(0,400);\n",
"xlim(0,24);\n",
"grid(linewidth=0.5);\n",
"ylabel(\"Load in kW ------>\");\n",
"xlabel(\"Time in hours ----->\");\n",
"title(\"Daily Load Curve\")\n",
"\n",
"#Results:\n",
"print \"Diversity factor is \",round(DF,3)\n",
"print \"Unis generated per day is \",E,\"kWh\"\n",
"print \"Load factor is \",round(LF*100,1),\"%\"\n",
"print \"The daily load curve is shown below:\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"Diversity factor is "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 1.286\n",
"Unis generated per day is 4600 kWh\n",
"Load factor is 54.8 %\n",
"The daily load curve is shown below:\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEZCAYAAACaWyIJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVQW6x/HvJqk0UCgTyW3R5AW3IZs0ccwKRzCpIKuJ\nCVOxsJM2NXlpjDhdpDoDnWZyzJNzmsYLaWo+TYmjaWaJmVZoQXUiRQ0SEclCNMcUwXX+MHfSvsBW\nt3vL+n2ex0fW2pf18or7Zb3vulgMwzAQERHTCvJ3ACIi4l8qBCIiJqdCICJicioEIiImp0IgImJy\nKgQiIianQiCtwo4dOwgNDeX40dAJCQnMmjXLz1G5FxQUxNdff+3vMEQAFQIJEFFRUbRr14727dsT\nHh7ONddcw0svvURLT3O59NJL+eGHH7BYLABYLBbH196YO3cu1157rdevO93efvttrrvuOtq3b0+n\nTp1ISEjgX//6l7/DklZKhUACgsViYdmyZezfv58dO3aQlZXFs88+S2Zmpr9DO+Nef/110tLSGDNm\nDFVVVXz77bc89dRTJ1UIDMNocTEV81IhkIATGhpKSkoKr732Gvn5+Xz55ZcALF++nLi4ODp06MCl\nl15KTk6O4zUVFRUEBQVx9OjRJu9VX1/PhRdeyP/93/851n377bdccMEFfP/9917FtWHDBq6++mrC\nwsLo378/H374oeOxOXPmYLPZaN++PVdccQV///vfm7z2ueee45JLLsFqtTJ79my32zAMg0mTJvHE\nE09wzz33EBoaCsB1113neM+pU6cyatQot997QkICjz32GNdccw0XXHABzz33HFdffXWT7UybNo1b\nbrkFgMOHD/Pwww9z2WWX0blzZ8aPH8+hQ4e8yo2c3VQIJGBdffXVWK1WPvjgAwBCQkKYP38++/bt\nY/ny5fztb3+joKDA43uce+65pKenM3/+fMe6hQsXkpiYyEUXXdTiWGpra7npppuYMGECtbW1TJo0\niZtuuona2loAIiIiWL58Ofv372fOnDlMnDiR4uJiAFauXMlf/vIXVq9eTVlZGatXr3a7nS1btrBz\n505++9vfun1OS1pe8+fP5x//+AcHDhxg3LhxbNmyhW3btjkeX7BgAXfddRcAWVlZbNu2jc8++4xt\n27ZRVVXFU0891aK8SOugQiAB7ZJLLnF82F5//fX07t0bgJiYGO68807Wrl3b7HuMHj2ahQsXOpbn\nzZvX5Dfqlli+fDk9e/bkrrvuIigoiDvvvJPo6GhHu+bGG2/k8ssvB4799j506FDWrVsHwOLFi7nn\nnnuw2Wy0a9euyZ7MLx3fS4mMjHT7nOZaPRaLhTFjxtCrVy+CgoJo3749t9xyiyMHW7duZcuWLaSm\npmIYBi+//DLPP/88YWFhhISE8Oijj7Jo0aKWJ0fOeioEEtCqqqq48MILAfj4448ZPHgwnTp1Iiws\njJdeeqlF7Z34+Hjatm1LYWEhmzdvZvv27aSmpnoVx65du7j00kubrLvsssvYtWsXACtWrGDAgAFc\ndNFFhIeH89Zbbzliq66upmvXro7X/fJ9TnR8L6W6utqr+H7pxO0BjBgxwlEIFixYwK233sr555/P\nnj17OHjwIH379iU8PJzw8HCSk5P57rvvTmn7cnZRIZCAtXHjRqqqqhg0aBBw7MNs+PDh7Ny5k7q6\nOsaNG+c0E3AnIyOD+fPnM2/ePO644w7OPfdcr2Lp0qUL33zzTZN133zzDV26dOHw4cPcfvvtTJky\nhW+//Za9e/dy4403On5zj4yMZMeOHY7Xnfj1L/Xs2ZOuXbvy+uuvu31OSEgIBw8edCzv3r3b6Tm/\nbB8lJiayZ88ePvvsMxYtWsSIESMA6NixI23btqW0tJS9e/eyd+9e6urq2L9/v4dsSGujQiAB4/gH\n5/79+1m2bBnp6emMGjXK0Q46cOAA4eHhnHvuuRQVFbFgwQKP/fITWygjR47kjTfe4NVXX2X06NHN\nxnH48GEOHTrk+HPjjTdSVlbGwoULaWho4LXXXmPz5s3cfPPN1NfXU19fT8eOHQkKCmLFihWsWrXK\n8X5paWnMnTuXr776ioMHD3psDVksFp5//nmefvpp5s6dy/79+zl69CgffPAB9913HwCxsbG8//77\nVFZWsm/fPnJzcz1+7wDBwcHccccdPPzww+zdu5ekpCTg2PkM9957LxMmTGDPnj3Asb2wE+MXEzBE\nAkBUVJTRtm1bIzQ01OjQoYMxcOBAY+bMmcbRo0cdz3n99deNyy67zAgNDTVuvvlm48EHHzRGjRpl\nGIZhlJeXG0FBQUZjY6NhGIaRkJBgzJo1q8k2hgwZYlx++eUe45g7d65hsVia/Dn+vh988IHRt29f\no0OHDka/fv2M9evXO1734osvGhEREUZYWJgxatQoIz093Xj88ccdj+fl5RmdO3c2unTpYsyePdsI\nCgoytm/f7jaOlStXGtdee60REhJiXHzxxcbgwYONt956y/H473//eyMsLMzo3r278fLLLzf7vRuG\nYaxbt86wWCzGAw880GT9oUOHjOzsbONXv/qV0b59e6NXr17GjBkzPOZJWheLYfj2IOPGxkb69euH\n1WrlX//6F7W1tfzud7/jm2++ISoqisWLFxMWFgZAbm4us2fP5pxzzuGFF15g6NChvgxNTCYzM5Mu\nXbroiBiRX/B5a2j69OnYbDbHLnxeXh5JSUmUlZUxZMgQ8vLyACgtLeW1116jtLSUlStXcv/997e4\n/yvSnIqKCt544w1TnqAm0hyfFoKdO3fy1ltvMXbsWEfPcunSpWRkZADHBnhLliwBoKCggPT0dIKD\ng4mKiqJbt24UFRX5Mjwxiccff5yYmBimTJnCZZdd5u9wRAKOTwvBxIkTee655wgK+nkzNTU1RERE\nAMdOwqmpqQGOHZ5ntVodz7NarVRVVfkyPDGJp59+mh9++IFHH33U36GIBCSfFYJly5bRqVMn4uLi\n3J4A09yFwU7momEiIuKdNr564w0bNrB06VLeeustDh06xP79+xk1ahQRERHs3r2bzp07U11dTadO\nnYBjx2lXVlY6Xr9z5066dOni9L5dunRxnMQjIiItExsbS0lJiesHz8ShSYWFhcbNN99sGIZh/PGP\nfzTy8vIMwzCM3Nxc45FHHjEMwzC+/PJLIzY21jh8+LDx9ddfG7/61a+aHDp43BkK+azz5JNP+juE\ngKS8OFNOXGvtefH02emzPYJfOt7mycrKIi0tjVmzZjkOHwWw2WykpaVhs9lo06YNM2fOVGvICxUV\nFf4OISApL86UE9fMnJczUgiuv/56rr/+egAuvPBCt1dfzM7OJjs7+0yEJCIiP9ElJlqJMWPG+DuE\ngKS8OFNOXDNzXnx+ZvHpZrFYdMclEREvefrs1B5BK1FYWOjvEAKS8uJMOXHNzHlRIRARMTm1hkRE\nTECtIRERcUuFoJUwc3/TE+XFmXLimpnzokIgImJymhGIiJiAZgQiIuKWCkErYeb+pifKizPlxDUz\n50WFQETE5DQjEBExAc0IRETELRWCVsLM/U1PlBdnyolrZs6LCoGIiMlpRiAiYgKaEYiIiFsqBK2E\nmfubnigvzpQT18ycF58VgkOHDhEfH4/dbsdms/Hoo48CMHXqVKxWK3FxccTFxbFixQrHa3Jzc+ne\nvTvR0dGsWrXKV6GJiMgJfDojOHjwIO3ataOhoYFBgwbx5z//mXfffZfQ0FAmTZrU5LmlpaWMGDGC\njRs3UlVVRWJiImVlZQQFNa1VmhGIiHjPbzOCdu3aAVBfX09jYyPh4eEALoMpKCggPT2d4OBgoqKi\n6NatG0VFRb4MT0RE8HEhOHr0KHa7nYiICAYPHkzv3r0BmDFjBrGxsWRmZlJXVwfArl27sFqtjtda\nrVaqqqp8GV6rYub+pifKizPlxDUz58WnhSAoKIiSkhJ27tzJ+++/T2FhIePHj6e8vJySkhIiIyOZ\nPHmy29dbLBZfhiciIkCbM7GRDh06cNNNN7Fp0yYSEhIc68eOHUtKSgoAXbp0obKy0vHYzp076dKl\ni8v3GzNmDFFRUQCEhYVht9sd73u8qms5MJctlmPLkPDT375ehjVrCgPm+w+U5eMCJZ5AWE5ISAio\neE51ubCwkLlz5wI4Pi/d8dmw+LvvvqNNmzaEhYXx448/csMNN/Dkk0/Su3dvOnfuDMC0adPYuHEj\nCxYscAyLi4qKHMPibdu2Oe0VaFgsIuI9vwyLq6ur+c1vfoPdbic+Pp6UlBSGDBnClClT6NOnD7Gx\nsaxdu5Zp06YBYLPZSEtLw2azkZyczMyZM9Ua8sIvf9OTY5QXZ8qJa2bOi89aQzExMXz66adO6195\n5RW3r8nOziY7O9tXIYmIiAu61pCIiAnoWkMiIuKWCkErYeb+pifKizPlxDUz50WFQETE5DQjEBEx\nAc0IRETELRWCVsLM/U1PlBdnyolrZs6LCoGIiMlpRiAiYgKaEYiIiFsqBK2EmfubnigvzpQT18yc\nFxUCERGT04xARMQENCMQERG3VAhaCTP3Nz1RXpwpJ66ZOS8qBCIiJqcZgYiICWhGICIibqkQtBJm\n7m96orw4U05cM3NefFYIDh06RHx8PHa7HZvNxqOPPgpAbW0tSUlJ9OjRg6FDh1JXV+d4TW5uLt27\ndyc6OppVq1b5KjQRETmBT2cEBw8epF27djQ0NDBo0CD+/Oc/s3TpUjp27MiUKVN49tln2bt3L3l5\neZSWljJixAg2btxIVVUViYmJlJWVERTUtFZpRiAi4j2/zQjatWsHQH19PY2NjYSHh7N06VIyMjIA\nyMjIYMmSJQAUFBSQnp5OcHAwUVFRdOvWjaKiIl+GJyIi+LgQHD16FLvdTkREBIMHD6Z3797U1NQQ\nEREBQEREBDU1NQDs2rULq9XqeK3VaqWqqsqX4bUqZu5veqK8OFNOXDNzXtr48s2DgoIoKSlh3759\n3HDDDaxZs6bJ4xaLBYvF4vb17h4bM2YMUVFRAISFhWG320lISAB+/sc02/JxgRJPoCwPHlzCMQk/\n/V2oZUoCLB73y2vWHFsOlJ+ns2m5sLCQuXPnAjg+L905Y+cRPP3007Rt25Z//OMfFBYW0rlzZ6qr\nqxk8eDCbN28mLy8PgKysLACGDRtGTk4O8fHxTQPWjEBExGt+mRF89913jiOCfvzxR9555x3i4uJI\nTU0lPz8fgPz8fIYPHw5AamoqixYtor6+nvLycrZu3Ur//v19FZ6IiPzEZ4Wgurqa3/zmN9jtduLj\n40lJSWHIkCFkZWXxzjvv0KNHD9577z3HHoDNZiMtLQ2bzUZycjIzZ8702DaSpszc3/REeXGmnLhm\n5rz4bEYQExPDp59+6rT+wgsvZPXq1S5fk52dTXZ2tq9CEhERF3StIRERE9C1hkRExC0VglbCzP1N\nT5QXZ8qJa2bOiwqBiIjJaUYgImICmhGIiIhbKgSthJn7m54oL86UE9fMnJcWF4JNmzZx+PBhX8Yi\nIiJ+0KIZQXV1NZdeeilz5sxh5MiRZyIutzQjEBHxnqfPzhYVgtzcXLZv38727dudriB6pqkQiIh4\n75SGxYZhMG/ePPLy8jh8+DDbt28/7QHKqTNzf9MT5cWZcuKamfPSbCEoLCykV69edOzYkYyMDGbN\nmnUm4hIRkTOk2dbQyJEjSU9P56abbmLfvn307dvX5b2EzxS1hkREvHfSraG9e/fy0UcfkZycDECH\nDh0YMGAAy5cvP/1RioiIX3gsBOHh4Wzbtq3Jb//z588nJSXF54GJd8zc3/REeXGmnLhm5rx41d/5\n+9//7qs4RETET7y61lBcXBzFxcW+jKdZmhGIiHjvtF1rSB/AIiKtj1eFYNmyZb6KQ06Rmfubnigv\nzpQT18ycF68Kwbhx47x688rKSgYPHkzv3r258soreeGFFwCYOnUqVquVuLg44uLiWLFiheM1ubm5\ndO/enejoaFatWuXV9kRExHs+nRHs3r2b3bt3Y7fbOXDgAH379mXJkiUsXryY0NBQJk2a1OT5paWl\njBgxgo0bN1JVVUViYqLTOQuaEYiIeO+0zQji4uK82nDnzp2x2+0AhISE0KtXL6qqqgDX84aCggLS\n09MJDg4mKiqKbt26UVRU5NU2RUTEO14Vgt///vcnvaGKigqKi4sZMGAAADNmzCA2NpbMzEzq6uoA\n2LVrF1ar1fEaq9XqKBzimZn7m54oL86UE9fMnJc23jz53nvv5dNPP/V6IwcOHOC3v/0t06dPJyQk\nhPHjx/PEE08A8PjjjzN58mS31zCyWCxO68aMGUNUVBQAYWFh2O12EhISgJ//Mc22fFygxBMoyyUl\nJQEVTyAsl5SUBFQ8WvbNcmFhIXPnzgVwfF664/PzCI4cOcLNN99McnIyEyZMcHq8oqKClJQUvvji\nC/Ly8gDIysoCYNiwYeTk5BAfH/9zwJoRiIh47bTNCJ588kmvNmwYBpmZmdhstiZFoLq62vH1m2++\nSUxMDACpqaksWrSI+vp6ysvL2bp1K/379/dqmyIi4h2vCoG3ewPr169n/vz5rFmzpsmhoo888gh9\n+vQhNjaWtWvXMm3aNABsNhtpaWnYbDaSk5OZOXOmy9aQODu+SyhNKS/OlBPXzJwXr2YES5cuJScn\np8XPHzRoEEePHnVaf/xqpq5kZ2eTnZ3tTVgiInIKvJoR2O12x/DNXzQjEBHx3infs/i4o0eP+u2G\nNMepEIiIeO+0DYv79et3WgKS08/M/U1PlBdnyolrZs6Lrj4qImJyXrWGHnvsMZ555hlfxtMstYZE\nRLx32lpDJ57YJSIirYNXheD4ZSEk8Ji5v+mJ8uJMOXHNzHnx7yFAIiLid17NCIqKivx+yQfNCERE\nvHfaziMIBCoEIiLeO23DYglcZu5veqK8OFNOXDNzXlQIRERMTq0hERETUGtIRETcUiFoJczc3/RE\neXGmnLhm5ry4LQQPPfQQixcv1s3jRURaObczghkzZvDhhx+yYcMGDMNg4MCBXHPNNVxzzTXExsb6\n7XLUmhGIiHjvlM8jqKqqchSFgoIC9uzZw/79+097oC2hQiAi4r2THhYbhsFnn33G0qVLKSgoYO3a\ntXTr1o3Jkyf7JFA5eWbub3qivDhTTlwzc17c3rM4KSmJ/fv3Y7fbiY+PJzs7m+joaK9uJl9ZWcno\n0aP59ttvsVgs/Md//Ad/+MMfqK2t5Xe/+x3ffPMNUVFRLF68mLCwMAByc3OZPXs255xzDi+88AJD\nhw499e9SRETcctsauu+++/jss89o164d8fHxDBw4kF//+td07NixxW++e/dudu/ejd1u58CBA/Tt\n25clS5YwZ84cOnbsyJQpU3j22WfZu3cveXl5lJaWMmLECDZu3EhVVRWJiYmUlZU1mUeoNSQi4r1T\nmhHs27ePjz76iA8//JAPP/yQ7777jt69e/PKK694Hcjw4cN54IEHeOCBB1i7di0RERHs3r2bhIQE\nNm/eTG5uLkFBQTzyyCMADBs2jKlTpzJgwIAWfTMiIuLaKZ1Qdv7559OuXTvatm3LeeedR2VlJZ9+\n+qnXQVRUVFBcXEx8fDw1NTVEREQAEBERQU1NDQC7du3CarU6XmO1WnX4aguZub/pifLiTDlxzcx5\ncTsjmDhxIhs2bKCsrIy4uDgGDhzI+PHjeeWVVxz9/JY6cOAAt99+O9OnTyc0NLTJYxaLxePcwdVj\nY8aMISoqCoCwsDDsdjsJCQnAz/+YZls+LlDiCZTlkpKSgIonEJZLSkoCKh4t+2a5sLCQuXPnAjg+\nL91x2xqaPn06gwYNwm63c84553h8E0+OHDnCzTffTHJyMhMmTAAgOjqawsJCOnfuTHV1NYMHD2bz\n5s3k5eUBkJWVBRxrDeXk5DS5RaZaQyIi3jup1tBDDz1E3759ycnJabK+sbGRESNGtGjDhmGQmZmJ\nzWZzFAGA1NRU8vPzAcjPz2f48OGO9YsWLaK+vp7y8nK2bt3q9xvhiIi0ds3OCHbs2EFubi4Ahw8f\n5rbbbqNHjx4tevP169czf/581qxZQ1xcHHFxcaxcuZKsrCzeeecdevTowXvvvefYA7DZbKSlpWGz\n2UhOTmbmzJleHa5qZsd3CaUp5cWZcuKamfPS7FFDR48e5a677qJPnz6899573HjjjUycOPFMxedE\nrSHXCgsLHX1C+Zny4kw5ca215+WkDh/95JNPHL+NHzlyhPvuu4+BAwcyduxYAK666iofheuZCoGI\niPdOqhAkJCQ0acsYhtFkec2aNac5zJZRIRAR8Z5uXm8CrX239mQpL86UE9dae150hzIREXFLewQi\nIiagPQIREXGrRYVg/fr1vPrqq+Tn55Ofn39SF5wT3zLzMdCeKC/OlBPXzJwXt9caOm7kyJF8/fXX\nTpeaGD16tE8DExGRM6PZGUGvXr0oLS0NmDN8NSMQEfHeKc0IrrzySqqrq097UCIiEhiaLQR79uzB\nZrMxdOhQUlJSSElJITU19UzEJl4wc3/TE+XFmXLimpnz0uyMYOrUqWcgDBER8RedRyAiYgInNSO4\n5pprAAgJCSE0NLTJn/bt2/smUhEROePcFoL169cDx24z+cMPPzT5s3///jMWoLSMmfubnigvzpQT\n18ycF51ZLCJicpoRiIiYgK41JCIibqkQtBJm7m96orw4U05cM3Ne3BYCV0cLeXvU0D333ENERAQx\nMTGOdVOnTsVqtTpuZr9ixQrHY7m5uXTv3p3o6GhWrVp1Ct+WiIi0VLMzgscee4xLLrmEkSNHAvDq\nq6+ya9cunn766WbffN26dYSEhDB69Gi++OILAHJycggNDWXSpElNnltaWsqIESPYuHEjVVVVJCYm\nUlZWRlBQ01qlGYGIiPdOaUawdOlS7r//ftq3b0/79u0ZP348BQUFLdrwtddeS3h4uNN6V8EUFBSQ\nnp5OcHAwUVFRdOvWjaKiohZtR0RETl6zheCCCy5g/vz5NDY20tjYyKuvvkpISMgpbXTGjBnExsaS\nmZlJXV0dALt27cJqtTqeY7VaqaqqOqXtmImZ+5ueKC/OlBPXzJyXZq81tGDBAh566CEmTJgAHDvj\neMGCBSe9wfHjx/PEE08A8PjjjzN58mRmzZrl8rnuLn09ZswYoqKiAAgLC8NutztuOn38H9Nsy8d5\n+3qL5fjrE46/g8+X16w5c/kpKSnx6fufjcslJSUBFY+WfbNcWFjI3LlzARyfl+74/DyCiooKUlJS\nHDMCd4/l5eUBkJWVBcCwYcPIyckhPj6+acCaEYiIeM3TZ2ezewQ//vgjs2bNorS0lEOHDjnWz549\n+6SCqa6uJjIyEoA333zTcURRamoqI0aMYNKkSVRVVbF161b69+9/UtsQEZGWa3ZGMGrUKGpqali5\nciXXX389lZWVLZ4RpKenM3DgQLZs2ULXrl2ZPXs2jzzyCH369CE2Npa1a9cybdo0AGw2G2lpadhs\nNpKTk5k5c2bA3BXtbPDLFpEco7w4U05cM3Nemm0N2e12SkpK6NOnD59//jlHjhxh0KBBfPzxx2cq\nxibUGnKtsLDQ0SeUnykvzpQT11p7Xk7p8NFzzz0XgA4dOvDFF19QV1fHnj17Tm+Ecspa8w/wqVBe\nnCknrpk5L83OCO69915qa2t55plnSE1N5cCBAy06mUxERM4OuvpoK9Had2tPlvLiTDlxrbXn5ZRa\nQ3V1dUycOJG+ffvSt29fJk+ezL59+057kCIi4h/N7hHcdtttxMTEkJGRgWEYzJs3j88//5w33njj\nTMXYhPYIRES85+mzs9lCEBsby2effdbsujNFhUBExHun1Bpq27Yt69atcyx/8MEHtGvX7vRFJ6eF\nmY+B9kR5caacuGbmvDR71ND//u//Mnr0aMdcIDw8nPz8fJ8HJiIiZ0aLjxo6Xgg6dOjAX//6V8dF\n6M40tYZERLx3SjMCV7p27UplZeUpB3YyVAhERLynm9ebgJn7m54oL86UE9fMnBcVAhERk3PbGgoJ\nCXF79c+DBw/S2Njo08DcUWtIRMR7p31G4E8qBCIi3tOMwATM3N/0RHlxppy4Zua8qBCIiJicWkMi\nIiag1pCIiLilQtBKmLm/6Yny4kw5cc3MefFpIbjnnnuIiIggJibGsa62tpakpCR69OjB0KFDqaur\nczyWm5tL9+7diY6OZtWqVb4MTUREfuLTGcG6desICQlh9OjRfPHFFwBMmTKFjh07MmXKFJ599ln2\n7t1LXl4epaWljBgxgo0bN1JVVUViYiJlZWUEBTWtVZoRiIh4z28zgmuvvZbw8PAm65YuXUpGRgYA\nGRkZLFmyBICCggLS09MJDg4mKiqKbt26UVRU5MvwREQEP8wIampqiIiIACAiIoKamhoAdu3ahdVq\ndTzParVSVVV1psM7a5m5v+mJ8uJMOXHNzHlp9n4EvmSxWNxexuL4467XjwGifloKA+xAwk/LhT/9\nbbZlmnnc/fKaNThu2n38P0NrWS4pKQmoeAJhuaSkJKDicbd87L//sWX///86G5cLgbk/LUfhic/P\nI6ioqCAlJcUxI4iOjqawsJDOnTtTXV3N4MGD2bx5M3l5eQBkZWUBMGzYMHJycoiPj28asGYEIiJe\nC6jzCFJTUx13OMvPz2f48OGO9YsWLaK+vp7y8nK2bt1K//79z3R4IiKm49NCkJ6ezsCBA9myZQtd\nu3Zlzpw5ZGVl8c4779CjRw/ee+89xx6AzWYjLS0Nm81GcnIyM2fO9Ng2kqbM3N/0RHlxppy4Zua8\n+HRGsHDhQpfrV69e7XJ9dnY22dnZvgxJRER+QdcaEhExgYCaEYiISGBRIWglzNzf9ER5caacuGbm\nvKgQiIiYnGYEIiImoBmBiIi4pULQSpi5v+mJ8uJMOXHNzHlRIRARMTnNCERETEAzAhERcUuFoJUw\nc3/TE+XFmXLimpnzokIgImJymhGIiJiAZgQiIuKWCkErYeb+pifKizPlxDUz50WFQETE5DQjEBEx\nAc0IRETELb8VgqioKPr06UNcXJzjJvW1tbUkJSXRo0cPhg4dSl1dnb/CO+uYub/pifLiTDlxzcx5\n8VshsFiu6z+tAAAK3UlEQVQsFBYWUlxcTFFREQB5eXkkJSVRVlbGkCFDyMvL81d4IiKm4bcZweWX\nX86mTZu46KKLHOuio6NZu3YtERER7N69m4SEBDZv3tzkdZoRiIh4LyBnBBaLhcTERPr168fLL78M\nQE1NDREREQBERERQU1Pjr/BEREzDb4Vg/fr1FBcXs2LFCl588UXWrVvX5HGLxYLFYvFTdGcfM/c3\nPVFenCknrpk5L238teHIyEgALr74Ym699VaKioocLaHOnTtTXV1Np06dXL52zJgxREVFARAWFobd\nbichIQH4+R/TbMvHBUo8gbJcUlISUPEEwnJJSUlAxaNl3ywXFhYyd+5cAMfnpTt+mREcPHiQxsZG\nQkND+fe//83QoUN58sknWb16NRdddBGPPPIIeXl51NXVOQ2MNSMQEfGep89OvxSC8vJybr31VgAa\nGhq46667ePTRR6mtrSUtLY0dO3YQFRXF4sWLCQsLaxqwCoGIiNcCrhCcChUC1woLCx27h/Iz5cWZ\ncuJaa89LQB41JCIigUF7BCIiJqA9AhERcUuFoJU4ftiYNKW8OFNOXDNzXlQIRERMTjMCERET0IxA\nRETcUiFoJczc3/REeXGmnLhm5ryoEIiImJxmBCIiJqAZgYiIuKVC0EqYub/pifLiTDlxzcx5USEQ\nETE5zQhERExAMwIREXFLhaCVMHN/0xPlxZly4pqZ86JCICJicpoRiIiYgGYEIiLiVsAVgpUrVxId\nHU337t159tln/R3OWcPM/U1PlBdnyolrZs5LQBWCxsZGHnjgAVauXElpaSkLFy7kq6++8ndYZ4WS\nkhJ/hxCQlBdnyolrZs5LQBWCoqIiunXrRlRUFMHBwdx5550UFBT4O6yzQl1dnb9DCEjKizPlxDUz\n5yWgCkFVVRVdu3Z1LFutVqqqqvwYkYhI6xdQhcBisfg7hLNWRUWFv0MISMqLM+XENTPnpY2/AzhR\nly5dqKysdCxXVlZitVqbPOeKK65QwXAjPz/f3yEEJOXFmXLiWmvOS2xsrNvHAuo8goaGBnr27Mm7\n777LJZdcQv/+/Vm4cCG9evXyd2giIq1WQO0RtGnThv/5n//hhhtuoLGxkczMTBUBEREfC6g9AhER\nOfMCaljcHJ1s5lpUVBR9+vQhLi6O/v37+zscv7jnnnuIiIggJibGsa62tpakpCR69OjB0KFDTXl4\noKu8TJ06FavVSlxcHHFxcaxcudKPEfpHZWUlgwcPpnfv3lx55ZW88MILgHl/Zs6aQqCTzdyzWCwU\nFhZSXFxMUVGRv8Pxi7vvvtvpAy0vL4+kpCTKysoYMmQIeXl5forOf1zlxWKxMGnSJIqLiykuLmbY\nsGF+is5/goODmTZtGl9++SUfffQRL774Il999ZVpf2bOmkKgk808M3uH79prryU8PLzJuqVLl5KR\nkQFARkYGS5Ys8UdofuUqL6Cfl86dO2O32wEICQmhV69eVFVVmfZn5qwpBDrZzD2LxUJiYiL9+vXj\n5Zdf9nc4AaOmpoaIiAgAIiIiqKmp8XNEgWPGjBnExsaSmZlpmvaHOxUVFRQXFxMfH2/an5mzphDo\n3AH31q9fT3FxMStWrODFF19k3bp1/g4p4FgsFv0M/WT8+PGUl5dTUlJCZGQkkydP9ndIfnPgwAFu\nv/12pk+fTmhoaJPHzPQzc9YUgpacbGZWkZGRAFx88cXceuutpp0T/FJERAS7d+8GoLq6mk6dOvk5\nosDQqVMnx4fc2LFjTfvzcuTIEW6//XZGjRrF8OHDAfP+zJw1haBfv35s3bqViooK6uvree2110hN\nTfV3WH538OBBfvjhBwD+/e9/s2rVqiZHiJhZamqq40zR/Px8x392s6uurnZ8/eabb5ry58UwDDIz\nM7HZbEyYMMGx3rQ/M8ZZ5K233jJ69OhhXHHFFcaf/vQnf4cTEL7++msjNjbWiI2NNXr37m3avNx5\n551GZGSkERwcbFitVmP27NnG999/bwwZMsTo3r27kZSUZOzdu9ffYZ5xv8zLrFmzjFGjRhkxMTFG\nnz59jFtuucXYvXu3v8M849atW2dYLBYjNjbWsNvtht1uN1asWGHanxmdUCYiYnJnTWtIRER8Q4VA\nRMTkVAhERExOhUBExORUCERETE6FQETE5FQIxK++//57x+WQIyMjHZdHDg0N5YEHHjjt23vppZeY\nN29ei59fWFhISkrKaY9DJJAE1B3KxHwuuugiiouLAcjJySE0NJRJkyb5bHv33Xefz97bGw0NDbRp\n4///fnV1dYSFhfk7DPEz7RFIQDl+fuOJv4lPnTqVjIwMrrvuOqKionjjjTd4+OGH6dOnD8nJyTQ0\nNADwySefkJCQQL9+/Rg2bJjjmjEnmjp1Kn/5y18ASEhIICsri/j4eHr27MkHH3zg9HyLxcKBAwe4\n44476NWrFyNHjnQ89u6773LVVVfRp08fMjMzqa+vB47dKKi2thaATZs2MXjwYMe2R40axaBBg8jI\nyODLL7+kf//+xMXFERsby7Zt205XGlts0aJFxMTE8Pzzz/Pdd9+d8e1LYFAhkLNCeXk5a9asYenS\npYwcOZKkpCQ+//xz2rZty/Llyzly5AgPPvgg//znP9m0aRN33303//mf/+n0PideUdJisdDY2MjH\nH3/MX//6V3JycpyebxgGxcXFTJ8+ndLSUr7++ms2bNjAoUOHuPvuu1m8eDGff/45DQ0N/O1vf3O8\nrzubN2/m3Xff5dVXX+Wll15iwoQJFBcX88knn/jlIorjxo1jxYoVHDx4kOuuu4477riDt99+2/T3\nKzAbFQIJeBaLheTkZM455xyuvPJKjh49yg033ABATEwMFRUVlJWV8eWXX5KYmEhcXBz/9V//1aL7\nVdx2220AXHXVVVRUVLh8Tv/+/bnkkkuwWCzY7XbKy8vZsmULl19+Od26dQOO3cTk/fffb/b7SE1N\n5bzzzgPg17/+NX/605/47//+byoqKjj//PNbmpLTymq18thjj1FaWsrdd9/N3Xffza233uqXWMQ/\n/N+kFGmBc889F4CgoCCCg4Md64OCgmhoaMAwDHr37s2GDRu8et/jH8rnnHOOo8Xk7jknPu+Xv/Ub\nhuFY16ZNG44ePQrAoUOHmjyvXbt2jq/T09MZMGAAy5Yt48Ybb+Sll15ytJE8qaysdFx5d9y4cTQ2\nNvLyyy9jsVhYvnw5Y8aM4dtvv+Xqq69m7NixjrnIU089xccff8zy5cuxWCx8+umnjvcsKipizpw5\nrF69mjvvvJN777232Tik9VAhkIDXkjZFz5492bNnDx999BEDBgzgyJEjbN26FZvNdlLv54nFYqFn\nz55UVFSwfft2rrjiCubNm8f1118PHJsRbNq0iWHDhvHPf/7T7XbLy8u5/PLLefDBB9mxYwdffPFF\niwpB165dHQP24+6//37H12+//XaTx058bkpKCs8884xjedWqVfzxj38kMjKSsWPHMmPGjIAYYsuZ\npX9xCSgn9u9dfX3ic05cDg4O5vXXX+cPf/gD+/bto6GhgYkTJ7osBO56+K7Wu7tL1XnnncecOXO4\n4447aGhooH///owbNw6AJ598kszMTNq3b09CQoLb72Px4sXMmzeP4OBgIiMjXc40fK1jx44sW7as\nyW1gxXx0GWoREZPTsFhExORUCERETE6FQETE5FQIRERMToVARMTkVAhERExOhUBExORUCERETO7/\nAV3udrfsY+WJAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x49b18b0>"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.12, Page Number: 54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"%matplotlib inline\n",
"\n",
"\n",
"#Calculation:\n",
"M1 = 800 #max demand of consumer 1(Watts)\n",
"M2 = 1000 #max demand of consumer 2(Watts)\n",
"M3 = 1200 #max demand of consumer 3(Watts)\n",
"\n",
"n1 = linspace(0,8,10);\n",
"m1 = linspace(200,200,10);\n",
"plot(n1,m1);\n",
"\n",
"hold(True);\n",
"n2 = linspace(8,14,10);\n",
"m2 = linspace(800,800,10);\n",
"plot(n2,m2,'b');\n",
"\n",
"n3 = linspace(14,16,10);\n",
"m3 = linspace(2400,2400,10);\n",
"plot(n3,m3,'b');\n",
"\n",
"n4 = linspace(16,22,10);\n",
"m4 = linspace(800,800,10);\n",
"plot(n4,m4,'b');\n",
"\n",
"n5 = linspace(22,24,10);\n",
"m5 = linspace(400,400,10);\n",
"plot(n5,m5,'b');\n",
"\n",
"ylim(0,2500);\n",
"xlim(0,24);\n",
"grid(linewidth=0.5);\n",
"ylabel(\"Load in Watts ------>\");\n",
"xlabel(\"Time in hours ----->\");\n",
"title(\"Daily Load Curve\");\n",
"annotate(\"(Midnight)\",xy=(0,0));\n",
"annotate(\"(Midnight)\",xy=(24,0));\n",
"annotate(\"(Noon)\",xy=(12,0));\n",
"\n",
"#load factors of each consumers:\n",
"LF1 = (600*6+200*2+800*6)/(24*M1)\n",
"LF2 = (200*8+1000*2+200*2)/(24*M2)\n",
"LF3 = (200*6+1200*2+200*2)/(24*M3)\n",
"#The simultaneous maximum demand on the station is 200 + 1000 + 1200 = 2400 W\n",
"#and occurs from 2 P.M. to 4 P.M.\n",
"DF = (M1+M2+M3)/2400.0 #Diversity factor\n",
"LF = (200*8+800*6+2400*2+800*6+400*2)/(24*2400.0) #load factor\n",
"\n",
"#Results:\n",
"print \"(i) The maximum demand of individual consumers are:\"\n",
"print \"\\tConsumer 1 =\",M1,\"W, Consumer 2 =\",M2,\"W, Consumer 3 =\",M3,\"W\"\n",
"print \"\\n(ii)Load Factors of individual consumers are:\"\n",
"print \"\\tConsumer 1 =\",round(LF1*100,1),\"%, Consumer 2 =\",round(LF2*100,1),\"\"\"%,\n",
"\\tConsumer 3 =\"\"\",round(LF3*100,1),\"%\"\n",
"print \"\\n(iii)Diversity factor is \",DF\n",
"print \"\\n(iv) Load factor of the station is\",round(LF*100,1),\"%\"\n",
"print \"\\n The load curve is shown below:\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"(i) The maximum demand of individual consumers are:"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\tConsumer 1 = 800 W, Consumer 2 = 1000 W, Consumer 3 = 1200 W\n",
"\n",
"(ii)Load Factors of individual consumers are:\n",
"\tConsumer 1 = 45.8 %, Consumer 2 = 16.7 %,\n",
"\tConsumer 3 = 13.9 %\n",
"\n",
"(iii)Diversity factor is 1.25\n",
"\n",
"(iv) Load factor of the station is 29.2 %\n",
"\n",
" The load curve is shown below:\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAEZCAYAAADhf+DFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8DPf+P/DXREKRRIJKIquSusWSm8tG6xZfgqQVWhXi\nkovotzilKb1ozzkknCNxeijaOl9fjcuDCtE6KE3q6FcoKm4JjrgESSUrghNBULnN7w+/TMVOJGE3\nm515PR+PfTwys7Oz77yNzzufee/MCqIoiiAiIlIoK3MHQEREZEosdEREpGgsdEREpGgsdEREpGgs\ndEREpGgsdEREpGgsdKRoV65cgZ2dHSqvovH390dCQoKZo6qelZUVLl++bO4wiBSFhY4aNDc3NzRr\n1gz29vZwdHRE3759sXLlStT28s+XXnoJd+/ehSAIAABBEKSf62Lt2rXo379/nV9nbD/++CMGDBgA\ne3t7tGnTBv7+/vj+++/NHRZRg8ZCRw2aIAjYuXMn7ty5gytXrmDOnDlYtGgRoqKizB1avfv2228R\nEhKCiIgI6PV6XL9+HfPnz3+mQieKYq3/WCCydCx0ZDHs7OwwYsQIbN68GevWrcOZM2cAALt27YKv\nry9atGiBl156CbGxsdJrcnJyYGVlhYqKiir7KikpQcuWLfHvf/9bWnf9+nU0b94c//nPf+oU16FD\nh9C7d284ODhAp9Phl19+kZ5bs2YNtFot7O3t0aFDB/zv//5vldd+9tlnaNu2LTQaDVavXl3te4ii\niFmzZmHu3LmYPHky7OzsAAADBgyQ9hkTE4NJkyZV+7v7+/vjT3/6E/r27YvmzZvjs88+Q+/evau8\nz+eff46RI0cCAB4+fIgPPvgA7du3h7OzM6ZNm4bffvutTrkhaghY6Mji9O7dGxqNBgcOHAAA2Nra\nYsOGDbh9+zZ27dqFf/zjH9i+fftT99G4cWOEhoZiw4YN0rrExEQMGTIErVq1qnUshYWFeO211xAd\nHY3CwkLMmjULr732GgoLCwEATk5O2LVrF+7cuYM1a9bg/fffR3p6OgAgJSUFixcvxp49e3DhwgXs\n2bOn2vc5f/488vLy8NZbb1W7TW1OyW7YsAFff/01iouLMXXqVJw/fx4XL16Unt+4cSMmTJgAAJgz\nZw4uXryIkydP4uLFi9Dr9Zg/f36t8kLUkLDQkUVq27atVEwGDhyIbt26AQA8PT0xbtw47Nu3r8Z9\nhIWFITExUVpev359lRlRbezatQtdunTBhAkTYGVlhXHjxsHDw0M6nRgUFAR3d3cAj2ZfQ4cOxc8/\n/wwASEpKwuTJk6HVatGsWbMqM9EnVc4yXVxcqt2mplORgiAgIiICXbt2hZWVFezt7TFy5EgpB1lZ\nWTh//jyCg4MhiiJWrVqFJUuWwMHBAba2tvjkk0+wadOm2ieHqIFgoSOLpNfr0bJlSwBAWloaBg0a\nhDZt2sDBwQErV66s1elHPz8/NG3aFKmpqTh37hwuXbqE4ODgOsVx9epVvPTSS1XWtW/fHlevXgUA\nJCcno0+fPmjVqhUcHR3xww8/SLHl5+ejXbt20uue3M/jKmeZ+fn5dYrvSY+/HwCMHz9eKnQbN27E\nG2+8gRdeeAE3btzA/fv30bNnTzg6OsLR0RGBgYG4efPmc70/kTmw0JHFOXr0KPR6Pfr16wfg0WA9\natQo5OXloaioCFOnTjXoyVUnPDwcGzZswPr16zFmzBg0bty4TrG4urri119/rbLu119/haurKx4+\nfIjRo0fjo48+wvXr13Hr1i0EBQVJMy8XFxdcuXJFet3jPz+pS5cuaNeuHb799ttqt7G1tcX9+/el\n5WvXrhls8+TpzSFDhuDGjRs4efIkNm3ahPHjxwMAWrdujaZNmyIzMxO3bt3CrVu3UFRUhDt37jwl\nG0QNEwsdNXiVheHOnTvYuXMnQkNDMWnSJOl0ZXFxMRwdHdG4cWMcOXIEGzdufGq/6vFTfBMnTsTW\nrVvxzTffICwsrMY4Hj58iN9++016BAUF4cKFC0hMTERZWRk2b96Mc+fO4fXXX0dJSQlKSkrQunVr\nWFlZITk5Gbt375b2FxISgrVr1+Ls2bO4f//+U09dCoKAJUuWYMGCBVi7di3u3LmDiooKHDhwAO+8\n8w4AwNvbG/v370dubi5u376NuLi4p/7uAGBjY4MxY8bggw8+wK1btxAQEADg0fV8b7/9NqKjo3Hj\nxg0Aj2bRj8dPZClY6KjBGzFiBOzt7fHSSy8hLi4Os2fPxpo1a6TnV6xYgblz58Le3h4LFizA2LFj\nq7z+yaL3+HK7du3Qo0cPWFlZSTNEOYIg4NChQ2jatCmaNWuGZs2aoXnz5nBwcMDOnTuxePFitG7d\nGn//+9+xc+dOtGzZEnZ2dli+fDlCQkLQsmVLJCYmSp9oBIDhw4cjOjoa//Vf/4XOnTtj8ODBTy3Q\no0ePxubNm7F69Wq4urrC2dkZc+fOxahRowAAAQEBGDt2LLy8vNC7d2+MGDHiqb97pfHjx+Onn37C\nmDFjYGX1+5CwaNEidOzYEX369EGLFi0QEBCACxcuVBsfUUMlmOqLV3NzcxEWFobr169DEAT893//\nN2bOnImYmBh8/fXXePHFFwEACxcuRGBgIAAgLi4Oq1evRqNGjbB8+XIMHToUAHD8+HFERERIf0Ev\nW7bMFCGTSkVFRcHV1ZWfKCRSKJMVumvXruHatWvw8fFBcXExevbsiW3btiEpKQl2dnaYNWtWle0z\nMzMxfvx4qf8yZMgQZGVlQRAE6HQ6fPnll9DpdAgKCsLMmTMxfPhwU4RNKpOTkwNfX19kZGSgffv2\n5g6HiEzAZKcunZ2d4ePjA+BRk7xr167Q6/UA5D8GvX37doSGhsLGxgZubm7o2LEj0tLSkJ+fj7t3\n70Kn0wF49JHwbdu2mSpsUpE///nP8PT0xEcffcQiR6Rg9dKjy8nJQXp6Ovr06QMA+OKLL+Dt7Y2o\nqCgUFRUBePQxbY1GI71Go9FAr9cbrHd1dZUKJtHzWLBgAe7evYtPPvnE3KEQkQmZvNAVFxfjrbfe\nwrJly2Bra4tp06YhOzsbGRkZcHFxwezZs00dAhERqZi1KXdeWlqK0aNHY+LEidInw9q0aSM9P2XK\nFIwYMQLAo5labm6u9FxeXh40Gg1cXV2Rl5dXZb2rq6vBe7m6ukoX6RIRUe14e3sjIyPD3GGYlMlm\ndKIoIioqClqtFtHR0dL6x+/s8M9//hOenp4AgODgYGzatAklJSXIzs5GVlYWdDodnJ2dYW9vj7S0\nNIiiiPXr10tF83FXr16V7sjOx++PefPmmT2GhvhgXpgT5uXR4+TJk6YqAw2GyWZ0Bw8exIYNG+Dl\n5QVfX18Ajy4lSExMREZGBgRBgLu7O1auXAkA0Gq1CAkJgVarhbW1NVasWCFd87NixQpERETgwYMH\nCAoK4icu6yAnJ8fcITRIzIsh5kQe82L5TFbo+vXrJ3sbpspr5uR8+umn+PTTTw3W9+zZE6dPnzZq\nfEREpA68M4rCRUREmDuEBol5McScyGNeLJ/JLhivb4IgQCG/ChFRvVHD2MkZncKlpqaaO4QGiXkx\nxJzIY14sHwsdEREpGk9dEhGpmBrGTpNeME5E5vGUb/sxCYWPk2TheOpS4dhfkKf0vIhi3R9796Y+\n0+uUXuSUfqyoAQsdEREpGnt0REQqpoaxkzM6IiJSNBY6hWN/QR7zYog5kce8WD4WOiIiUjT26IiI\nVEwNYydndEREpGgsdArH/oI85sUQcyKPebF8LHRERKRo7NEREamYGsZOzuiIiEjRWOgUjv0FecyL\nIeZEHvNi+VjoiIhI0dijIyJSMTWMnZzRERGRorHQKRz7C/KYF0PMiTzmxfKx0BERkaKxR0dEpGJq\nGDs5oyMiIkVjoVM49hfkMS+GmBN5zIvlY6EjIiJFY4+OiEjF1DB2ckZHRESKxkKncOwvyGNeDDEn\n8pgXy8dCR0REisYeHRGRiqlh7OSMjoiIFI2FTuHYX5DHvBhiTuQxL5aPhY6IiBTNZIUuNzcXgwYN\nQrdu3dC9e3csX74cAFBYWIiAgAB07twZQ4cORVFRkfSauLg4dOrUCR4eHti9e7e0/vjx4/D09ESn\nTp3w3nvvmSpkRfL39zd3CA0S82KIOZHHvFg+kxU6GxsbfP755zhz5gwOHz6Mr776CmfPnkV8fDwC\nAgJw4cIFDB48GPHx8QCAzMxMbN68GZmZmUhJScH06dOlBum0adOQkJCArKwsZGVlISUlxVRhExGR\nwpis0Dk7O8PHxwcAYGtri65du0Kv12PHjh0IDw8HAISHh2Pbtm0AgO3btyM0NBQ2NjZwc3NDx44d\nkZaWhvz8fNy9exc6nQ4AEBYWJr2Gasb+gjzmxRBzIo95sXz10qPLyclBeno6/Pz8UFBQACcnJwCA\nk5MTCgoKAABXr16FRqORXqPRaKDX6w3Wu7q6Qq/X10fYRESkANamfoPi4mKMHj0ay5Ytg52dXZXn\nBEGAIAhGe6+IiAi4ubkBABwcHODj4yOdX6/8q4zLXK6UmpraYOJpKMuVGko8DWHZ39+/QcXzvMup\nqalYu3YtAEjjpdKZ9ILx0tJSvP766wgMDER0dDQAwMPDA6mpqXB2dkZ+fj4GDRqEc+fOSb26OXPm\nAACGDx+O2NhYtG/fHoMGDcLZs2cBAImJidi3bx/+53/+p+ovooKLHomIjE0NY6fJTl2KooioqCho\ntVqpyAFAcHAw1q1bBwBYt24dRo0aJa3ftGkTSkpKkJ2djaysLOh0Ojg7O8Pe3h5paWkQRRHr16+X\nXkM1e/IvdXqEeTHEnMhjXiyfyU5dHjx4EBs2bICXlxd8fX0BPLp8YM6cOQgJCUFCQgLc3NyQlJQE\nANBqtQgJCYFWq4W1tTVWrFghndZcsWIFIiIi8ODBAwQFBWH48OGmCpuIiBSG97okIlIxNYydvDMK\nEREpGgudwrG/II95McScyGNeLB8LHRERKRp7dEREKqaGsZMzOiIiUjQWOoVjf0Ee82KIOZHHvFg+\nFjoiIlI09uiIiFRMDWMnZ3RERKRoLHQKx/6CPObFEHMij3mxfCx0RESkaOzRERGpmBrGzlrN6O7d\nu4cWLVpgz549po6HiIjIqGpV6LZs2YJu3bohISHB1PGQkbG/II95McScyGNeLF+tCl1CQgISEhKQ\nkZGBW7dumTomIiIio6mxR3fu3DlMmTIFBw4cQGxsLFq2bIkZM2bUV3y1pobzzERExqaGsbPGGV1C\nQgIiIyMBAOHh4Vi9erXJgyIiIjKWpxa60tJSfPfddxg7diwAwM3NDa1atcKxY8fqJTh6fuwvyGNe\nDDEn8pgXy2f9tCcrC52tra207uuvv4a19VNfRkRE1GDU6Tq6EydOoEePHqaM55mp4TwzEZGxqWHs\nrNOdUaKiokwVBxERkUnwFmAKx/6CPObFEHMij3mxfHUqdPPmzTNVHERERCZRpx7dvHnzEBsba8p4\nnpkazjMTERmbGsbOOs3oduzYYao4iIiITKJOhU7pVV+J2F+Qx7wYYk7kMS+Wr06F7sSJE6aKg4iI\nyCTq1KPr0aNHgy12ajjPTERkbGoYO3nqkoiIFK1Ohe61114zVRxkIuwvyGNeDDEn8pgXy1enQufn\n52eqOIiIiEyiTj06X19fpKenmzKeZ6aG88xERMamhrGTtwAjIiJFq1OhW7lypaniIBNhf0Ee82KI\nOZHHvFi+OhW6r7/+2lRxEBERmUSdCt3Ro0frtPPJkyfDyckJnp6e0rqYmBhoNBr4+vrC19cXycnJ\n0nNxcXHo1KkTPDw8sHv3bmn98ePH4enpiU6dOuG9996rUwxq5+/vb+4QGiTmxRBzIo95sXx1KnRt\n2rSp084jIyORkpJSZZ0gCJg1axbS09ORnp6OwMBAAEBmZiY2b96MzMxMpKSkYPr06VKDdNq0aUhI\nSEBWVhaysrIM9klERFSdOhW6tWvX1mnn/fv3h6Ojo8F6uU/4bN++HaGhobCxsYGbmxs6duyItLQ0\n5Ofn4+7du9DpdACAsLAwbNu2rU5xqBn7C/KYF0PMiTzmxfKZ5YLxL774At7e3oiKikJRUREA4OrV\nq9BoNNI2Go0Ger3eYL2rqyv0er1R4iAiIuWr91uATZs2DdnZ2cjIyICLiwtmz5793Puk6rG/II95\nMcScyGNeLJ91XTZ+++23n/sNH+/zTZkyBSNGjADwaKaWm5srPZeXlweNRgNXV1fk5eVVWe/q6iq7\n74iICLi5uQEAHBwc4OPjIx2klacfuMxlLnNZzcupqalSG6pyvFQ80cSys7PF7t27S8tXr16Vfl6y\nZIkYGhoqiqIonjlzRvT29hYfPnwoXr58WXz55ZfFiooKURRFUafTiYcPHxYrKirEwMBAMTk52eB9\n6uFXsUh79+41dwgNEvNiiDmRp/S8qGHsrNOMrq5CQ0Oxb98+3Lx5E+3atUNsbCxSU1ORkZEBQRDg\n7u4uXYSu1WoREhICrVYLa2trrFixAoIgAABWrFiBiIgIPHjwAEFBQRg+fLgpwyYiIgWp070uGzI1\n3K+NiMjY1DB28l6XRESkaCx0ClfZhKaqmBdDzIk85sXysdAREZGi1alHV1hYiLy8PHh5eZkypmei\nhvPMRETGpoaxs8YZ3cCBA3Hnzh0UFhaiZ8+emDJlCt5///36iI2IiOi51Vjobt++DXt7e2zduhVh\nYWE4cuQI9uzZUx+xkRGwvyCPeTHEnMhjXixfjYWuvLwc+fn5SEpKku51WXl9GxERUUNXY6GbO3cu\nhg0bhg4dOkCn0+HSpUvo1KlTfcRGRlB5CyCqinkxxJzIY14sX413RnFxccGpU6ek5Q4dOrBHR0RE\nFqPGGd2MGTMM1s2cOdMkwZDxsb8gj3kxxJzIY14sX7Uzul9++QWHDh3CjRs3sGTJEunjp3fv3kV5\neXm9BUhERPQ8qi10JSUlUlG7e/eutN7e3h7ffvttvQRHz4/9BXnMiyHmRB7zYvmqLXQDBw7EwIED\n0axZM3z00UdVntuyZQs/kEJERBahxh5dYmKiwbqFCxeaJBgyPvYX5DEvhpgTecyL5at2RpecnIwf\nfvgBer0eM2fOrNKjs7GxqbcAiYiInke197o8efIk0tPTMXfuXCxYsEAqdPb29hg0aBAcHR3rNdCa\nqOF+bURExqaGsbPGmzqXlJSgcePG9RXPM1PDPxYRkbGpYeyssUeXk5ODt956C1qtFu7u7nB3d8fL\nL79cH7GREbC/II95McScyGNeLF+NhS4yMhJTp06FtbU1UlNTER4ejgkTJtRHbERERM+txlOXPXr0\nwIkTJ+Dp6YnTp09XWdeQqGH6TURkbGoYO2u81+ULL7yA8vJydOzYEV9++SXatm2Le/fu1UdsRERE\nz63GU5fLli3D/fv3sXz5chw7dgwbNmzAunXr6iM2MgL2F+QxL4aYE3nMi+Wrdkbn7e2Nvn37om/f\nvmjdujXc3d2xdu3aegyNiIjo+VXbozt9+jQOHTqEQ4cO4ZdffkFxcTFeffVV9O3bF6+++ir8/Pzq\nO9anUsN5ZiIiY1PD2Fnjh1Eq3bx5E5s2bcLSpUuRnZ3d4L7BQA3/WERExqaGsbPaHl15eTmOHj2K\nZcuWYezYsRg2bBj+9a9/YcqUKfi///u/+oyRngP7C/KYF0PMiTzmxfJV26Ozs7ODVqvFH/7wB8TF\nxfEicSIiskjVnrpMTEzEoUOHcOLECVhZWUGn0+GVV17BK6+8AldX1/qOs0ZqmH4TERmbGsbOWvXo\n7t+/jyNHjuDgwYNYs2YNSkpKcOXKlfqIr9bU8I9FRGRsahg7n3od3b179/DTTz9h8eLFWLRoET7/\n/HPY2toiODi4vuKj58T+gjzmxRBzIo95sXzV9uh8fX1x5coV9OrVC3379sXs2bPh5+cHOzu7+oyP\niIjouTz1++g8PT1hZVXjzVMaBDVMv4mIjE0NY2etr6Nr6NTwj0VEZGxqGDstY7pGz4z9BXnMiyHm\nRB7zYvlY6IiISNFqdery4MGDyMnJQVlZ2aMXCQLCwsJMHlxdqGH6TURkbGoYO2uc0U2cOBEffvgh\nDh48iGPHjuHYsWM4evRorXY+efJkODk5wdPTU1pXWFiIgIAAdO7cGUOHDkVRUZH0XFxcHDp16gQP\nDw/s3r1bWn/8+HF4enqiU6dOeO+99+ry+xERkdqJNfDw8BArKipq2kzW/v37xRMnTojdu3eX1n34\n4YfiokWLRFEUxfj4ePHjjz8WRVEUz5w5I3p7e4slJSVidna22KFDB+l9e/fuLaalpYmiKIqBgYFi\ncnKywXvV4ldRpb1795o7hAaJeTHEnMhTel7UMHbWOKPr3r078vPzn6mI9u/fH46OjlXW7dixA+Hh\n4QCA8PBwbNu2DQCwfft2hIaGwsbGBm5ubujYsSPS0tKQn5+Pu3fvQqfTAQDCwsKk1xAREdWk2gvG\nK924cQNarRY6nQ5NmjQB8Oic7o4dO57pDQsKCuDk5AQAcHJyQkFBAQDg6tWr6NOnj7SdRqOBXq+H\njY0NNBqNtN7V1RV6vf6Z3luN/P39zR1Cg8S8GGJO5DEvlq/GQhcTE2OyNxcEAYIgmGz/RERENRY6\nY/814+TkhGvXrsHZ2Rn5+flo06YNgEcztdzcXGm7vLw8aDQauLq6Ii8vr8r66r49ISIiAm5ubgAA\nBwcH+Pj4SPFXXgujtuXKdQ0lnoayvHTpUh4fTyxnZGQgOjq6wcTTUJaf/L9k7niM8fusXbsWAKTx\nUvGqa969+uqroiiKYvPmzUVbW9sqDzs7u1o3AbOzsw0+jBIfHy+KoijGxcUZfBjl4cOH4uXLl8WX\nX35Z+jCKTqcTDx8+LFZUVPDDKHWk9Eb6s2JeDDEn8pSeFzWMnSa9BVhoaCj27duHmzdvwsnJCfPn\nz8fIkSMREhKCK1euwM3NDUlJSXBwcAAALFy4EKtXr4a1tTWWLVuGYcOGAXh0eUFERAQePHiAoKAg\nLF++3OC91HAtCBGRsalh7OS9LomIVEwNYydvAaZwj/cX6HfMiyHmRB7zYvlY6IiISNF46pKISMXU\nMHZWe3mBra1ttde4CYKAO3fumCwoIiIiY6n21GVxcTHu3r2L9957D4sWLYJer4der8ff/vY33ljZ\ngrC/II95McScyGNeLF+NPbodO3Zg+vTpsLe3h729PaZNm4bt27fXR2xERETPrcZC17x5c2zYsAHl\n5eUoLy/HN998A1tb2/qIjYyg8s4IVBXzYog5kce8WL4aC93GjRuRlJQEJycnODk5ISkpCRs3bqyP\n2IiIiJ4bP3WpcKmpqfyLVAbzYog5kaf0vKhh7Kzxps4PHjxAQkICMjMz8dtvv0nrV69ebdLAiIiI\njKHGU5eTJk1CQUEBUlJSMHDgQOTm5rJHZ0GU/Jfo82BeDDEn8pgXy1fjqUsfHx9kZGTAy8sLp06d\nQmlpKfr164e0tLT6irFW1DD9JiIyNjWMnTXO6Bo3bgwAaNGiBU6fPo2ioiLcuHHD5IGRcfAaIHnM\niyHmRB7zYvlq7NG9/fbbKCwsxF/+8hcEBwejuLgYCxYsqI/YSEX4RfPGV19/pPPfzvgUPsGqd/zU\nJRGRiqlh7Kzx1GVRURHef/999OzZEz179sTs2bNx+/bt+oiNiIjoudVY6CZPngx7e3ts2bIFSUlJ\nsLOzQ2RkZH3ERkbA/oI85sUQcyKPebF8NfboLl26hK1bt0rLMTEx8Pb2NmlQRERExlLjjK5p06b4\n+eefpeUDBw6gWbNmJg2KjIfXAMljXgwxJ/KYF8tX44dRMjIyEBYWJvXlHB0dsW7dugY3q1NDQ5WI\nyNjUMHbWOKPz8fHBqVOnpEdGRgb27t1bH7GREbC/II95McScyGNeLF+Nha5SixYt0KJFCwDA4sWL\nTRYQERGRMT3TdXTt2rVDbm6uKeJ5ZmqYfhMRGZsaxs5az+iIiIgsUbWFztbWFnZ2drKPq1ev1meM\n9BzYX5DHvBhiTuQxL5av2uvoiouL6zMOIiIik+C9LomIVEwNYyd7dEREpGgsdArH/oI85sUQcyKP\nebF8LHRERKRo7NEREamYGsZOzuiIiEjRWOgUjv0FecyLIeZEHvNi+VjoiIhI0dijIyJSMTWMnZzR\nERGRopmt0Lm5ucHLywu+vr7Q6XQAgMLCQgQEBKBz584YOnQoioqKpO3j4uLQqVMneHh4YPfu3eYK\n2+KwvyCPeTHEnMhjXiyf2QqdIAhITU1Feno6jhw5AgCIj49HQEAALly4gMGDByM+Ph4AkJmZic2b\nNyMzMxMpKSmYPn06KioqzBU6ERFZELP16Nzd3XHs2DG0atVKWufh4YF9+/bByckJ165dg7+/P86d\nO4e4uDhYWVnh448/BgAMHz4cMTEx6NOnj/RaNZxnJiIyNjWMnWad0Q0ZMgS9evXCqlWrAAAFBQVw\ncnICADg5OaGgoAAAcPXqVWg0Gum1Go0Ger2+/oMmIiKLU+3X9JjawYMH4eLighs3biAgIAAeHh5V\nnhcEAYIgVPt6ueciIiLg5uYGAHBwcICPjw/8/f0B/H6eXW3LlesaSjwNZXnp0qU8Pp5YzsjIQHR0\ndIOJp6EsP/l/ydzxGOP3Wbt2LQBI46XSNYjLC2JjY2Fra4tVq1YhNTUVzs7OyM/Px6BBg3Du3Dmp\nVzdnzhwAj05dxsbGws/PT9qHGqbfzyI1NVU62Ol3zIsh5kSe0vOihrHTLIXu/v37KC8vh52dHe7d\nu4ehQ4di3rx52LNnD1q1aoWPP/4Y8fHxKCoqQnx8PDIzMzF+/HgcOXIEer0eQ4YMwcWLF6vM6tTw\nj0VEZGxqGDvNcuqyoKAAb7zxBgCgrKwMEyZMwNChQ9GrVy+EhIQgISEBbm5uSEpKAgBotVqEhIRA\nq9XC2toaK1aseOppTSIiokoN4tSlMajhr5JnofTTLs+KeTHEnMhTel7UMHbyzihERKRonNEREamY\nGsZOzuiIiEjRWOgU7vFrgOh3zIsh5kQe82L5zHbBOBERGeIHyo2PPToiIhVTw9jJU5dERKRoLHQK\nx/6CPOb5sx9jAAAObklEQVTFEHMij3mxfCx0RESkaOzRERGpmBrGTs7oiIhI0VjoFI79BXnMiyHm\nRB7zYvlY6IiISNHYoyMiUjE1jJ2c0RERkaKx0Ckc+wvymBdDzIk85sXysdAREZGisUdHRKRiahg7\nOaMjIiJFY6FTOPYX5DEvhpgTecyL5WOhIyIiRWOPjohIxdQwdirqG8b5zbyWTeH/14jITBR16lIU\n+XjysXdvqtljqO2jPrHvYog5kce8WD5FFToiIqInsUdHRKRiahg7OaMjIiJFY6FTOPYX5DEvhpgT\necyL5WOhIyIiRWOPjohIxdQwdnJGR0REisZCp3DsL8hjXgwxJ/KYF8unqEL38OFDDBw4EJcvX4aV\nlRX+/Oc/S8/dvHkTNjY2mDFjBgBg5cqVWL9+vcE+cnJy4OnpWeN7vfbaa7hz585Tt/H398fx48cN\n1p88eRLJycnS8o4dO7BgwYIa35Ms25PH55dffik99+6772LdunVGfb9Tp04hKirKqPskZVL62Kmo\nQvfNN9/g9ddfR6NGjeDu7o4ffvhBem7Lli3o3r07hP9/n7B33nkHkyZNeub32rVrF+zt7Z+6jVDN\nPcnS09OrxDZixAh89913KC0tfeZ4quPv72/0fSqBOfLy+PHZpk0bLF++XPo3r+5YeR5eXl64dOkS\nrl+/XqvteazIU0NelD52KqrQJSYmYuTIkRBFEc2aNUPXrl2lvwqSkpIQEhIiNV1jYmKwePFiAMDx\n48fh7e0NHx8frFixQtrf2rVr8eabbyIwMBCdO3fGxx9/LD3n5uaGwsJCAMCCBQvg4eGB/v37Y/z4\n8dJ+gUcHiZ+fH7p06YIDBw6gtLQUc+fOxebNm+Hr64stW7ZAEAS88sor2L17t8lzRObz+PH54osv\nYvDgwbKzuIyMDPTp0wfe3t548803UVRU9NT1/v7+mDNnTpXjrFJgYCC2bNlSP78gWSylj50WU+hS\nUlLg4eGBTp06YdGiRbLb/Pvf/0bnzp2l5XHjxmHTpk3Iy8tDo0aN0LZtW+k5QRCkvxoiIyPx1Vdf\nISMjw2CfJ0+eRFJSEk6fPo3NmzdDr9dLrweAo0ePYuvWrTh16hSSk5Nx7NixKn+NlJeXIy0tDUuX\nLkVsbCxsbGywYMECjBs3Dunp6RgzZgwAQKfTYf/+/c+ZJUPsL8ir77yUl5cbHJ8fffQR/v73v6Oi\nogLA78dUWFgYPvvsM5w8eRKenp6IjY196npBEAyOs0p1Oa54rMhTQ16UPnZaRKErLy/Hu+++i5SU\nFGRmZiIxMRFnz5412M7Ozq7K8rBhw/Cvf/0LmzZtwtixY2X3ffv2bdy+fRv9+vUDAIMp+eDBg2Fn\nZ4cmTZpAq9Xi119/lZ4TRREHDx7EqFGj0LhxY9ja2mLEiBFVXv/mm28CAHr06IGcnBzpdU9+nLdt\n27bS88YkdwBS/efl5s2bBsenu7s7/Pz8sHHjRmld5fHYv39/AEB4eDj279+PO3fuyK6vJHecAYCL\ni0utjyseK/LUkBelj50WUeiOHDmCjh07ws3NDTY2Nhg3bhy2b99usN2TCbCxsUHPnj2xZMkSjBkz\nplbXijy5TZMmTaSfGzVqhLKysirPP3kNSnWvl3vt4yoqKkzSp6k8vUVVmSMvcsffp59+ikWLFkn/\ngZ88Bqo7Zmt7nMntszo8VuSpIS9KHzstotDp9Xq0a9dOWtZoNNI0+HHFxcUG62bPno1FixbBwcGh\nyvrKgaVFixZwcHDAwYMHATxqytaWIAjo27cvvv/+ezx8+BDFxcXYtWtXja+zt7fH3bt3q6zLz89H\n+/bta/3eZFlat24te3x26dIFWq0W33//PQRBgL29PRwdHaU+2/r16+Hv71/t+prwuKLaUPrYaRGF\nrrZ/kXbv3h3nz5+v8hqtVitNqR8/t/z4z2vWrMEf/vAH+Pr6Vnnt49tUp1evXggODoaXlxeCgoLg\n6emJFi1aPPX3GDRoEDIzM6WGKvBo1jpgwIBa/Z51YYrToUpQ33lp1KiR7PEJAH/84x+Rl5cnLa9b\ntw4ffvghvL29cerUKcydO/ep65/0+L7rclzxWJGnhrwofuwULcAvv/wiDhs2TFpeuHChGB8fX2Wb\nDh06iAD44IMPPviow8Pb21tcs2aNwZhaH4qLi0VRFMV79+6JvXr1EtPT0+v0+vLyctHb21ssLS19\n6nYWUehKS0vFl19+WczOzhYfPnwoent7i5mZmQbbPXz4UOzfv79YUVFRr/GNHz9e9PHxET08PJ7p\nYNm+fbu4YMECE0RGDUl9H58nT54Uo6Ki6uW9yLIpfey0mJs6JycnIzo6GuXl5YiKisInn3xi7pCI\niMgCWEyhIyIiehYW8WGUmtTmYnI1cnNzg5eXF3x9faHT6cwdjllMnjwZTk5OVe7BV1hYiICAAHTu\n3BlDhw5VxcfHnySXl5iYGGg0Gvj6+sLX1xcpKSlmjNA8cnNzMWjQIHTr1g3du3fH8uXLAfCYsXQW\nX+hqezG5GgmCgNTUVKSnp+PIkSPmDscsIiMjDQbs+Ph4BAQE4MKFCxg8eDDi4+PNFJ35yOVFEATM\nmjUL6enpSE9Px/Dhw80UnfnY2Njg888/x5kzZ3D48GF89dVXOHv2LI8ZC2fxha62F5OrldrPTPfv\n3x+Ojo5V1u3YsQPh4eEAHt1hZNu2beYIzazk8gLweHF2doaPjw8AwNbWFl27doVer+cxY+EsvtDV\n9mJyNRIEAUOGDEGvXr2watUqc4fTYBQUFMDJyQkA4OTkhIKCAjNH1HB88cUX8Pb2RlRUlOpPz+Xk\n5CA9PR1+fn48ZiycxRc6U9w2SykOHjyI9PR0JCcn46uvvsLPP/9s7pAanNpc2KoW06ZNQ3Z2NjIy\nMuDi4oLZs2ebOySzKS4uxujRo7Fs2TKD+0DymLE8Fl/oXF1dkZubKy3n5uZCo9GYMaKGw8XFBQDw\n4osv4o033lBtn+5JTk5OuHbtGoBHtw9q06aNmSNqGNq0aSMN4lOmTFHt8VJaWorRo0dj0qRJGDVq\nFAAeM5bO4gtdr169kJWVhZycHJSUlGDz5s0IDg42d1hmd//+femecPfu3cPu3btr9e2/ahAcHCx9\nD9y6deukwUzt8vPzpZ//+c9/qvJ4EUURUVFR0Gq1iI6OltbzmLFsiriOjheTG8rOzsYbb7wBACgr\nK8OECRNUmZfQ0FDs27cPN2/ehJOTE+bPn4+RI0ciJCQEV65cgZubG5KSkgxuXKt0T+YlNjYWqamp\nyMjIgCAIcHd3x8qVK6W+lFocOHAAAwYMgJeXl3R6Mi4uDjqdTvXHjCVTRKEjIiKqjsWfuiQiInoa\nFjoiIlI0FjoiIlI0FjoiIlI0FjoiIlI0FjoiIlI0FjpqkP7zn/9IXxfj4uIifX2MnZ0d3n33XaO/\n38qVK7F+/fpab5+amooRI0YYPQ4iMj5rcwdAJKdVq1ZIT08HAMTGxsLOzg6zZs0y2fu98847Jtt3\nXZSVlcHa2vz/LYuKinhBNCkGZ3RkESrva/D4TComJgbh4eEYMGAA3NzcsHXrVnzwwQfw8vJCYGAg\nysrKAADHjx+Hv78/evXqheHDh0v3LHxcTEwMFi9eDADw9/fHnDlz4Ofnhy5duuDAgQMG2wuCgOLi\nYowZMwZdu3bFxIkTped++ukn9OjRA15eXoiKikJJSQmAR1+EW1hYCAA4duwYBg0aJL33pEmT0K9f\nP4SHh+PMmTPQ6XTw9fWFt7c3Ll68aKw01tqmTZvg6emJJUuW4ObNm/X+/kTGxEJHFi07Oxt79+7F\njh07MHHiRAQEBODUqVNo2rQpdu3ahdLSUsyYMQPfffcdjh07hsjISPzxj3802M/jd6QXBAHl5eVI\nS0vD0qVLERsba7C9KIpIT0/HsmXLkJmZicuXL+PQoUP47bffEBkZiaSkJJw6dQplZWX4xz/+Ie23\nOufOncNPP/2Eb775BitXrkR0dDTS09Nx/Phxs9ykfOrUqUhOTsb9+/cxYMAAjBkzBj/++KPqv6+O\nLBMLHVksQRAQGBiIRo0aoXv37qioqMCwYcMAAJ6ensjJycGFCxdw5swZDBkyBL6+vvjrX/9aq+8r\nfPPNNwEAPXr0QE5Ojuw2Op0Obdu2hSAI8PHxQXZ2Ns6fPw93d3d07NgRwKMv6dy/f3+Nv0dwcDCa\nNGkCAHjllVewcOFC/O1vf0NOTg5eeOGF2qbEqDQaDf70pz8hMzMTkZGRiIyMlO6fSmRJzN8MIHoO\njRs3BgBYWVnBxsZGWm9lZYWysjKIoohu3brh0KFDddpvZdFp1KiRdAq0um0e3+7JWZsoitI6a2tr\nVFRUAAB+++23Kts1a9ZM+jk0NBR9+vTBzp07ERQUhJUrV0qnOZ8mNzdX+uaOqVOnory8HKtWrYIg\nCNi1axciIiJw/fp19O7dG1OmTJH6kvPnz0daWhp27doFQRBw4sQJaZ9HjhzBmjVrsGfPHowbNw5v\nv/12jXEQNTQsdGSxanMarUuXLrhx4wYOHz6MPn36oLS0FFlZWdBqtc+0v6cRBAFdunRBTk4OLl26\nhA4dOmD9+vUYOHAggEc9umPHjmH48OH47rvvqn3f7OxsuLu7Y8aMGbhy5QpOnz5dq0LXrl076QM8\nlaZPny79/OOPP1Z57vFtR4wYgb/85S/S8u7du/Hhhx/CxcUFU6ZMwRdffNEgPiRD9Cx45JJFeLx/\nJvfz49s8vmxjY4Nvv/0WM2fOxO3bt1FWVob3339fttBV10OTW1/dt0w3adIEa9aswZgxY1BWVgad\nToepU6cCAObNm4eoqCjY29vD39+/2t8jKSkJ69evh42NDVxcXGR7iqbWunVr7Ny5E+3atav39yYy\nNn5NDxERKRo/jEJERIrGQkdERIrGQkdERIrGQkdERIrGQkdERIrGQkdERIrGQkdERIrGQkdERIr2\n/wAb/9x823/nZQAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x49b1ed0>"
]
}
],
"prompt_number": 29
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.13, Page Number: 55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"\n",
"#Variable declaration:\n",
"A = 12 #Area of load curve(cm**2)\n",
"Lo = 1000 #load under 1cm length(kW)\n",
"To = 2 #time under 1cm length(hr)\n",
"M = 3000 #maximum demand(kW)\n",
"\n",
"#Calculation:\n",
"L = Lo*To*A/24 #Average load(kW)\n",
"LF = L/M #load factor\n",
"\n",
"\n",
"#Results:\n",
"print \"Load factor is\",round(LF*100,1),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Load factor is 33.3 %\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.14, Page Number: 56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"C = 75 #Capacity of each generator(MW)\n",
"n = 4 #No. of generators\n",
"CV = 10000 #Calorific value of oil used(kcal/kg)\n",
"H = 2860 #Avg heat rate(kcal/kWh)\n",
"\n",
"\n",
"#Calculation:\n",
"E = (260*6+200*8+160*4+100*6) #Units generated per day(MWh)\n",
"L = E/24 #Avg load(MW)\n",
"LF =L/260 #Load factor\n",
"PCF = L/(n*C) #Plant capacity\n",
"TH = H*E*10**3 #heat generated per day(kcal)\n",
"w = TH/CV #daily fuel requirement(kg)\n",
"\n",
"print \"Daily load factor is\",round(LF*100,1),\"%\"\n",
"print \"Plant capacity factor is\",round(PCF*100,1),\"%\"\n",
"print \"Daily fuel requirement is (\",w/1000,\"* 10^3) kg\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Daily load factor is 70.5 %\n",
"Plant capacity factor is 61.1 %\n",
"Daily fuel requirement is ( 1258.4 * 10^3) kg\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.15, Page Number: 56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"%matplotlib inline\n",
"\n",
"#Calculations:\n",
"E = 20*2+40*4+60*4+20*4+50*4+20*6 #Units generated per day(MWh)\n",
"\n",
"#1st plot\n",
"subplot(1,3,1)\n",
"n1 = linspace(0,8,10);\n",
"m1 = linspace(20,20,10);\n",
"plot(n1,m1);\n",
"\n",
"hold(True);\n",
"n2 = linspace(8,12,10);\n",
"m2 = linspace(40,40,10);\n",
"plot(n2,m2,'b');\n",
"\n",
"n3 = linspace(12,16,10);\n",
"m3 = linspace(60,60,10);\n",
"plot(n3,m3,'b');\n",
"\n",
"n4 = linspace(16,20,10);\n",
"m4 = linspace(20,20,10);\n",
"plot(n4,m4,'b');\n",
"\n",
"n5 = linspace(20,24,10);\n",
"m5 = linspace(40,40,10);\n",
"plot(n5,m5,'b');\n",
"\n",
"ylim(0,100);\n",
"xlim(0,24);\n",
"grid(linewidth=0.5);\n",
"ylabel(\"Load in MW ------>\");\n",
"xlabel(\"Time in hours ----->\");\n",
"title(\"$(i)$ Daily Load Curve\");\n",
"\n",
"#next plot\n",
"subplot(1,3,3)\n",
"n1 = linspace(0,4,10);\n",
"m1 = linspace(60,60,10);\n",
"plot(n1,m1);\n",
"\n",
"hold(True);\n",
"n2 = linspace(4,8,10);\n",
"m2 = linspace(50,50,10);\n",
"plot(n2,m2,'b');\n",
"\n",
"n3 = linspace(8,12,10);\n",
"m3 = linspace(40,40,10);\n",
"plot(n3,m3,'b');\n",
"\n",
"n4 = linspace(12,24,10);\n",
"m4 = linspace(20,20,10);\n",
"plot(n4,m4,'b');\n",
"\n",
"ylim(0,100);\n",
"xlim(0,24);\n",
"grid(linewidth=0.5);\n",
"ylabel(\"Load in MW ------>\");\n",
"xlabel(\"Hours duration ----->\");\n",
"title(\"$(ii)$ Load Duration Curve\");\n",
"\n",
"\n",
"#Results:\n",
"print \"Energy generated per day is (\",E,\"* 10^3) kWh\"\n",
"print \"\\nThe daily load curve and load duration curves are shown below:\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"Energy generated per day is ("
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 840 * 10^3) kWh\n",
"\n",
"The daily load curve and load duration curves are shown below:\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEcCAYAAAAV2MmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYFFe6BvC3EWJcQNCwqKhtXIjIPgY1bjCKySRuiYor\nAhoyZuKWZBy9ibnGxBnQGY3LJDM+EyPGnWyKJGoSlSzuG3HBJTeCorYmirihYTv3D0MPjd3Q3XRV\nV3W9v+fh0SqqT33Nqa+/rnOqq3VCCAEiIiIJuDk7ACIicl0sMkREJBkWGSIikgyLDBERSYZFhoiI\nJMMiQ0REkmGRISIiybDIEBGRZBRXZPLy8h5YZzAYUFxc7IRoiLTFXP5Vx3wkWyiqyJw9exZ79+59\nYL2vry/mz58v+f5DQkLw7bffGpf1ej22b98u+X7tkZSUhDfeeMPZYZALsZR/1cmVj9ZQSx5Uf23R\nEkUVmWXLlmHUqFEPrHd3d8czzzyDDz/8sMbH6/V6NGzYEF5eXvDx8UGPHj2wbNkyWHvnnOPHj6N3\n797GZZ1OB51OZ9uTgDzFyZrY1q5diy5dusDT0xMtWrTA008/jV27dkkaF6mXpfyrzpZ8dHYe1PU1\nwR56vR47duwwWVf9tcWRlJ7niikyP/zwAwIDA03WzZw5E19++SUA4PHHH8fXX39dYxs6nQ5ZWVm4\nefMmzp8/j5kzZ2LevHmYMGGCZHFbisOe4mSrmhJl4cKFePnllzFr1iz8/PPPKCgowEsvvYTMzEyb\n91NWVlaXMEkFasu/6svW5qOz88DRrwnW5IJOp5O0iFWlijwXCjF37lxx/PjxGrd55ZVXxI8//mjx\n93q9Xmzfvt1k3f79+4Wbm5s4ceKEEEKI1NRU0a5dO+Hp6SmCg4PFZ599Zty2TZs24uuvvzZp7+uv\nvxbz588XQ4cONWl38uTJYurUqVbHUSk3N1f06dNHeHt7i86dO4vMzEzj72qK7fDhwyIyMlJ4enqK\nESNGiJEjR4pZs2aZ3UdRUZFo3Lix+Pjjj83+XgghdDqd+Omnn4zLiYmJJu21adNGzJs3T4SGhor6\n9euLefPmiWHDhpm0MWXKFDFlyhQhhBAXL14Uzz33nPD19RVt27YVS5YssbhvUh5r8q86e/Kxkhx5\nYCmG6q8JtubC3LlzLcY3duxY4ebmJho0aCAaN24s/v73vxvbqHxtqem5t2nTRvzjH/8QYWFhokmT\nJmLEiBHi3r17Zp+bWvJcMUVm8ODBoqKiosZtVq5cKdavX2/x95YO6tatW4t///vfQgghPvroI2Ew\nGIQQQmzYsEE0atRIXL582ezjK5cNBoNo1KiRKCoqEkIIUVpaKvz8/MThw4dtiqOkpES0a9dOpKam\nitLSUrFjxw7h6ekpTp8+XWNsv/76q2jdurVYtGiRKCsrEx9//LHw8PAQb7zxhtn9b9myRbi7u4vy\n8nKLf6vqB19SUpJJe23atBGRkZHiwoUL4t69e+LcuXOiYcOG4tatW0IIIcrKykTz5s3Fvn37RHl5\nuYiKihJvv/22KC0tFWfPnhWPPvqo2LZtm8X9k7JYk3/V2ZuPcuVBTTFUfU2wJRfu3r1rNr7KZUv7\nrFxn6bmfOXPGuK+uXbsKg8EgCgsLRadOnYxxVqeWPFfMcFlxcbHx1LqwsBAbNmxAfHy8yTY+Pj64\ncOGCzW23aNEChYWFAIBhw4YhICAAABAfH48OHTpg//79NT4+ICAAvXr1wkcffQQA2Lp1K3x9fREZ\nGWlTHHv37sWdO3cwc+ZMuLu7IzY2FgMGDMC6dessxrZv3z7s3bsXZWVlmDp1KurVq4ehQ4fi8ccf\nt7ifa9eu4ZFHHoGbm23dK6qc4ut0OkyZMgUtW7ZE/fr10bp1a0RFReGzzz4DAOzYsQMNGzZEdHQ0\nDhw4gKtXr2LWrFlwd3dH27Zt8fzzz2P9+vU27Z+cp6b8c3Q+ypUHNan6mmCOpVx4+OGH7XoNqe25\nr1271mRfAQEB8PHxwcCBA5GTk2O2LbXkuWKKTHl5ufH/hw8fxpNPPvnA5ZQNGjRASUmJzW1fuHAB\nTZs2BQB8+OGHiIyMhI+PD3x8fHD8+HFcvXq11jYSExOxevVqAMDq1auRkJBgcxyXLl1Cq1atTNa1\nadMGFy9erDE2g8GAli1bPvA4YWHct1mzZrh69SoqKipsjrGq6rGOHj3a+EKwdu1ajBkzBgBw7tw5\nXLp0yRi3j48PUlNT8fPPP9dp/ySfmvLP0fkoVx7UpOprgjWqxmsuvmvXrlnVjqXnfunSJeNyZQED\n7v+Nb9++bbYtteS5YoqMu7u78f/9+vVDeno6kpKSTLa5ceOGTQcGABw4cACXLl1Cz549ce7cObzw\nwgt49913UVhYiOvXryMkJMSqg3Tw4ME4evQojh8/js8//9z4h7dFixYtUFBQYLK/c+fOITAwEOfO\nnUNKSsoDsQFA8+bNjQlY9XGWJlW7d++O+vXrG9+NmNOwYUOTzzoYDIYH2qu+PGzYMGRnZ+PixYvY\nuHEjRo8eDQBo3bo12rZti+vXrxt/bt68iaysLCv+KqQENeWfI/MRkC8PLKn6mgDYlgvWvIbUFE/L\nli3NPvfqxdOattSS54opMgEBASYVe926dRg7diw+//xz4zqDwYD27dvX2E5l51U++VGjRiEhIQGd\nO3fGnTt3oNPp8Mgjj6CiogIrVqzA8ePHrYqvQYMGGDp0KEaPHo2uXbs+cCVOdSUlJbh3757xp7y8\nHN26dUPDhg0xf/58lJaWIjs7G1lZWRg5ciTu3LkDNzc3s7F1794d7u7uWLJkCUpLS/Hpp5/iwIED\nFvfdpEkTvPXWW3jppZewadMmFBcXo7S0FFu2bMGMGTMAABEREVizZg3Ky8uxdetWq67h9/X1RUxM\nDJKSkvDoo48iKCgIABAdHQ1PT0/Mnz8fd+/eRXl5OY4fP46DBw9a9bcl56st/+zNR2fmQaWaXhMA\n23LBmtcQf39//PTTT2Yf37VrV4vPvabYzVFLniumyPTp08dkXPPRRx9FVlYWoqOjjetycnLQo0eP\nGtsZOHAgvLy80Lp1a6SmpuLVV1/FihUrAADBwcF49dVX0b17dwQEBOD48ePGdzPWSExMxPHjx60a\nKnv66afRsGFD48+cOXPg4eGBzZs3Y8uWLfD19cWkSZOwatUqdOzYscbYPDw88OmnnyI9PR3NmjVD\nRkYGhg4dWuP+X3nlFSxcuBBz586Fn58fWrdujffeew/PPvssAGDx4sXYvHkzfHx8sHbtWuP62owe\nPRrbt283vrsBADc3N2RlZSEnJwePPvoofH198cILL+DmzZtWtUnOZyn/unbtarJsaz46Ow+Aml8T\nANtywZrXkP/5n//B3Llz4ePjg4ULF5r8rqbnbk5tl4GrIs9rvCygDpKTk4Wfn58ICQkxrrt27Zro\n16+f6NChg4iLixPXr183/u6NN94QPj4+IigoyOzVCnfv3hUvv/yyVOFa5fz58yZXXhC5iuvXr4uw\nsDCrc/bu3buiR48eon379hZzlkgICa8uS05OxtatW03WpaWlIS4uDmfOnEHfvn2RlpYGAMjNzUVm\nZiZef/11rF27Fn/6058emMxav349/vjHP0oVbq0qKiqwYMECjBo1Co0bN3ZaHERS8Pb2Ru/evY0T\nvpUs5eyCBQtw9epV5ObmYuvWrWZzlgiQcLisV69e8PHxMVmXmZmJxMREAPeHnjZu3AgA2LRpE0aN\nGoVXXnkFhw4dQvv27U1O3QsKCuDj42McG5TbnTt34OXlhe3bt2POnDlOiYFIakuWLMG+fftM1pnL\n2YKCApw6dQrJycnw8PCAXq9/IGeJKsk6J3PlyhX4+/sDuD85duXKFQD3L+sLDAyETqdDSkoKAgMD\nTa4iadWqFQYPHixnqCYaNWqE27dv49ixYxavAiFSO51O98C9y8zlbKtWreDt7W1y8Uv1nCWq5LSJ\n/9omtOS45xERWY85S/Zwr30Tx/H398fly5cREBAAg8EAPz8/AP+9drzShQsXzJ4xtGzZ0uRDS+Q8\n4eHhFj+JTK6DOesanJmvsp7JDBo0CCtXrgQArFy5EkOGDDGuX79+PUpKSpCXl4cff/zR5FLJSpcu\nXYK4f781h/3Mnj1b0e0ptc0ffvhBzkOHnERpOavEXFBDjM7MV8nOZEaNGoVvvvkGV69eRatWrfDW\nW29h5syZiI+Px/Lly6HX65GRkQHg/rXn8fHxCA4Ohru7O9577z3ZTr3z8/MV3Z6a2iR1U0POqiEX\n1BCjnCQrMtUvhaxk6TsoXnvtNbz22mtShUNEtWDOkhQU84l/Z6l+PyaltaemNomkpoZcUEOMctIJ\nIeT5CjcHkPMb56hm7AuyBo8TZXBmP2j+TCY7O1vR7ampTSKpqSEX1BCjnDRfZIiISDocLiO7sC/I\nGjxOlIHDZURE5JI0X2S0Oh6r5jFe0i415IIaYpST5osMERFJh3MyZBf2BVmDx4kycE6GiIhckuaL\njFbHY9U8xkvapYZcUEOMctJ8kSEiIulwTobswr4ga/A4UQbOyRARkUvSfJHR6nismsd4SbvUkAtq\niFFOmi8yREQkHc7JkF3YF2QNHifKwDkZIiJySZovMlodj1XzGC9plxpyQQ0xyknzRYaIiKTDORmy\nC/uCrMHjRBk4J0NERC5J80VGq+Oxah7jJe1SQy6oIUY5ab7IEBGRdDgnQ3ZhX5A1eJwoA+dkiIjI\nJWm+yGh1PFbNY7ykXWrIBTXEKCfNFxkiIpIO52TILuwLsgaPE2XgnAwREbkkzRcZrY7HqnmMl7RL\nDbmghhjlpPkiQ0RE0uGcDNmFfUHW4HGiDJyTISIil6T5IqPV8Vg1j/GSdqkhF9QQo5w0X2SIiEg6\nTpmTSU1NxerVq+Hm5obQ0FCsWLECd+7cwYgRI3Du3Dno9XpkZGTA29vbNFiO7yoG+0I77M1XgMeJ\nUmhqTiY/Px//+c9/cPjwYRw7dgzl5eVYv3490tLSEBcXhzNnzqBv375IS0uTOzQiqob5SnUle5Hx\n8vKCh4cHiouLUVZWhuLiYrRo0QKZmZlITEwEACQmJmLjxo2yxKPV8Vg1j/GSfFw9X6VoUw0xykn2\nItO0aVO8+uqraN26NVq0aAFvb2/ExcXhypUr8Pf3BwD4+/vjypUrcodGRNUwX6mu3OXe4U8//YRF\nixYhPz8fTZo0wfDhw7F69WqTbXQ6HXQ6ndnHJyUlQa/XAwC8vb0RERGBmJgYAP+t9rYuV7L38VK3\nJ8VyTEyMTdtnZ2cjPT0dAIx/f3J9dc1XwLE5W7nO0TlRtW0ltmfP/rOzs5Gfnw9nk33if8OGDfjq\nq6/w/vvvAwBWrVqFvXv3YseOHdi5cycCAgJgMBgQGxuLU6dOmQbLSUTFYF9oQ13yFeBxohSamvh/\n7LHHsHfvXty9exdCCHz99dcIDg7GwIEDsXLlSgDAypUrMWTIEFni0ep4rJrHeEk+rp6vUrSphhjl\nJPtwWXh4OMaNG4cuXbrAzc0NUVFReOGFF3Dr1i3Ex8dj+fLlxksiici5mK9UV7x3GdmFfUHW4HGi\nDJoaLiMiIu3QfJHR6nismsd4SbvUkAtqiFFOmi8yREQkHc7JkF3YF2QNHifKwDkZIiJySZovMlod\nj1XzGC9plxpyQQ0xyknzRYaIiKTDORmyC/uCrMHjRBk4J0NERC5J80VGq+Oxah7jJe1SQy6oIUY5\nab7IEBGRdDgnQ3ZhX5A1eJwoA+dkiIjIJWm+yGh1PFbNY7ykXWrIBTXEKCfNFxkiIpIO52TILuwL\nsgaPE2VQxZzM5cuXUVFRIWUsRORAzFlSAquKTGFhIdq2bYvMzEyp45GdVsdj1TzGS7Vz1ZxVQy6o\nIUY5WVVk1qxZg7i4OCxfvlzqeIjIAZizpBRWzclERUVh06ZNGDhwILZs2YLmzZvLEdsDOL6rHOwL\nZWPOUlWKnpM5ePAgfH190apVKyQkJCA9PV2GsIjIXsxZUpJai8z777+P8ePHAwASEhLw4YcfSh6U\nnLQ6HqvmMV6qmSvnrBpyQQ0xyqnGInPnzh1s27YNzz77LADAz88PQUFBqn7CRK6MOUtKU+OcTGlp\nKQoLC+Hv729cd/PmTQCAl5eX9NFVw/Fd5WBfKBNzlsxR7JyMh4eHycGalZUFLy8vpxysRFQ75iwp\njU23lXnjjTekisNptDoey+ETbXC1nFVDLqghRjnx3mVERCQZm+5dtn//fkRHR0sZT404vqsc7At1\nYM4SoOA5meref/99qeIgIgkwZ8nZbCoyBw4ckCoOp9HqeKyax3jJeq6Ws2rIBTXEKCebioyfn59U\ncRCRBJiz5Gw2zckYDAan3QMJ4PiukrAv1IE5S4CK5mSeeeYZqeIgIgkwZ8nZbCoyrviORKvjsWoe\n4yXruVrOqiEX1BCjnGwqMikpKVLFQUQSYM6Ss9lUZOrVq+eQnRYVFWHYsGHo1KkTgoODsW/fPhQW\nFiIuLg4dO3ZE//79UVRU5JB91SYmJkbR7ampTVIeV8tZNeSCGmKUk01F5t///rdDdjp16lQ8/fTT\nOHnyJI4ePYrHHnsMaWlpiIuLw5kzZ9C3b1+kpaU5ZF9EWsacJacTNggPD7dlc7OKiopE27ZtH1gf\nFBQkLl++LIQQwmAwiKCgoAe2sTFcq+zcuVPR7Sm1TSn6ghzP1XJWibkgdXuOaNOZ+WrTmUxWVlad\ni1peXh58fX2RnJyMqKgopKSk4M6dO7hy5Yrx7rH+/v64cuVKnfdFpHXMWXI2mz4nM2DAgDoftAcP\nHkT37t2xe/duPP7445g2bRo8PT3xz3/+E9evXzdu17RpUxQWFpoGy2vuFYN9oQ7MWQKc2w/utmx8\n8eLFOu8wMDAQgYGBePzxxwEAw4YNQ2pqKgICAnD58mUEBATAYDBY/KRyUlIS9Ho9AMDb2xsRERHG\nSbHKy/yUvhwbG/Pbs8n+7V/bl4WQN/7s7Gzjd8VX/v1J+ZSQszpdEgD9b0veACJgyzG/c6fzc1Zt\ny5X/z8/Ph9PZMraWnJzskDG6Xr16idOnTwshhJg9e7aYPn26mD59ukhLSxNCCJGamipmzJjxwONs\nDNcqWhiPlaJNKfqCHM/VclaJuSB1e45o05n5atOZzEsvveSQwrZ06VKMGTMGJSUlaNeuHVasWIHy\n8nLEx8dj+fLl0Ov1yMjIcMi+iLSMOUvOZtOcTFRUFA4fPixlPDXi+K5ysC/UgTlLgIruXcaDhUhd\nmLPkbDYVmdmzZ0sVh9No9b5Far4XElnP1XJWDbmghhjlZFORGTJkiFRxEJEEmLPkbDbNyTgbx3eV\ng31B1uBxogyqmZMhIiKyheaLjFbHY9U8xkvapYZcUEOMctJ8kSEiIulwTobswr4ga/A4UQZFzsm8\n88472L9/P8rKyuSMh4jsxJwlJbJYZC5cuIBp06bB19cXvXv3xmuvvYasrKwH7rKqdlodj1XzGC+Z\np4WcVUMuqCFGOVm8d9mCBQsAAL/++isOHjyIPXv24IMPPkBKSgq8vb1x8uRJ2YIkotoxZ0mJap2T\nKSoqwp49e7B7927s3r0bRUVFCAsLw4oVK+SK0Yjju8rBvlAu5ixV58x+sFhkUlJSkJubC09PT0RH\nR6N79+7o1q0bfHx85I7RiAescrAvlIc5S5YocuL//Pnz+PXXXxEQEICWLVuiZcuW8Pb2ljM2WWh1\nPFbNY7xknhZyVg25oIYY5WRxTmbbtm2oqKjAiRMnsGfPHixcuBDHjh1Ds2bN0K1bN7z11ltyxklE\ntWDOkhJZ9TmZgoIC7N69G7t27UJWVhauXbuGGzduyBGfCZ56Kwf7QtmYs1SVIudkFi9ejN27d2PP\nnj1wd3fHE088gR49euCJJ55ASEgI6tWrJ3esPGAVhH2hPMxZskSRczL5+fmIj4/H3r17cfbsWaxe\nvRovvvgiwsPDnXKwSkWr47FqHuMl87SQs2rIBTXEKCeLczKzZs0CcL8CmvswV9OmTaWLiohs5oo5\nq9M5ph2eTDmPxeEyNzc3BAYGmn0HpNPpcPbsWcmDM7dfnnorA/tCeZizZIkz+8HimcyUKVOwY8cO\n9OzZEyNHjkSvXr2gc9TbCiJyOOYsKZHFOZlFixYhJycHw4YNw+rVqxEREYHp06cjLy9Pzvgkp9Xx\nWDWP8ZJ5WshZNeSCGmKUU43fJ+Pm5obf//73mD9/PiZOnIj09HR89dVXcsVGRDZizpLSWJyTuX37\nNjZt2oQNGzbgl19+wXPPPYcRI0agdevWcsdoxPFd5WBfKA9zlixR5OdkGjVqhA4dOmDEiBHo2LHj\n/Y1/C1Sn0+G5556TNdCq+yfnY18oD3OWLFFkkUlKSqpx0tBV7uianZ2NmJgYxban1Db54qE8WshZ\nJeaC1O05ok1FXl2Wnp4uYxhEVFfMWVIiq+5dphR896wc7AuyBo8TZVDkbWWIiIjqSvNFRqvXyKv5\nunvSLjXkghpilJPFOZmqdu3ahfz8fJSVlQG4f+o1btw4SQMjIvsxZ0kpap2TGTt2LM6ePYuIiAiT\neyItXbpU8uCq4/iucrAvlIs5S9Up8hLmSp06dUJubq4i7oHEA1Y52BfKxZyl6hQ98R8SEgKDwSBH\nLE6h1fFYNY/xUs1cOWfVkAtqiFFOtc7J/PLLLwgODkZ0dDTq168P4H5VzMzMlDw4IrIdc5aUpNbh\nMksV1NGfaLUGT72Vg32hXMxZqk7RczJSKS8vR5cuXRAYGIjNmzejsLAQI0aMwLlz56DX65GRkQFv\nb2/TYHnAKgb7QlvsyVeAx4lSKHJOpkePHgCAxo0bw9PT0+THy8urzjtevHgxgoODjZOTaWlpiIuL\nw5kzZ9C3b1+kpaXVeR/W0Op4rJrHeMk8KXPWVfNVijbVEKOcLBaZXbt2Abh/+/Bbt26Z/Ny8ebNO\nO71w4QK++OILPP/888bqmpmZicTERABAYmIiNm7cWKd9EGmNVDnLfKW6cMpw2fDhw/Haa6/h5s2b\n+Mc//oHNmzfDx8cH169fBwAIIdC0aVPjsjFYnnorBvtCO+zNV4DHiVIocrhMKllZWfDz80NkZKTF\nJ63T6RRxjT+R1jFfqa6suq2MI+3evRuZmZn44osvcO/ePdy8eRMJCQnw9/fH5cuXERAQAIPBAD8/\nP7OPT0pKgl6vBwB4e3sjIiLCeNVM5bilLcs5OTmYNm2a1dvHxgJAzG/RZP/2b9XlHADTavj9/WUh\nrI+3cp09z8/Ssk7337Zrfj6Vy9kA0n9b1oO0oa75Cjg2ZxctWmTz4x2Rs0JYvz9bX1OsWa5cZ8v2\n2dnZyM/Ph9MJJ8rOzhYDBgwQQggxffp0kZaWJoQQIjU1VcyYMeOB7aUId+fOnYpuT6ltOvnQISew\nNV+FcPxxosRckLo9R7TpzHy1OCfTuHFji6fAOp2uzpP/APDNN99gwYIFyMzMRGFhIeLj43H+/Hle\nwqwC7AvlkTpnbc3Xyv3yOHE+RX9OZtasWWjRogXGjh0LAFizZg0uXbqEt99+W5YAq+IBqxzsC+Vi\nzlJ1Tu2H2k51QkNDrVonByvCtZkWTpWlaFOKviDHcOWcVWIuSN2eI9p0Zr7WenVZo0aNsHr1apSX\nl6O8vBxr1qxB48aNpa59RGQn5iwpSa3DZXl5eZg6dSp2794N4P6nihcvXmy8WkROPPVWDvaFcjFn\nqTpFz8koCQ9Y5WBfkDV4nCiDM/uh1s/J3L17F8uXL0dubi7u3btnXP/BBx9IGphcsrOzHXp3Wke3\np6Y2SRlcOWfVkAtqiFFOtc7JJCQk4MqVK9i6dSv69OmDgoICju8SKRhzlpSk1uGyiIgI5OTkICws\nDEePHkVpaSl69uyJffv2yRWjEU+9lYN9oVzMWapO0fcue+ihhwAATZo0wbFjx1BUVIRffvlF8sCI\nyD7MWVKSWotMSkoKCgsLMXfuXAwaNAjBwcH4y1/+IkdsstDqd0mo+fspqGaunLNqyAU1xCinWif+\nU1JSAAB9+vRBXl6e5AERUd0wZ0lJap2TKSoqwpw5c/Dtt98CuH+3z//93/9FkyZNZAmwKo7vKgf7\nQrmYs1Sdoudkxo8fDy8vL3z00UfIyMiAp6cnkpOT5YiNiOzAnCVFqe2+M2FhYVatk4MV4dpMC/ct\nkqJNKfqCHMOVc1aJuSB1e45o05n5WuuZTIMGDfDdd98Zl7///ns0bNhQsqJHRHXDnCUlqXVOJicn\nB+PGjcONGzcAAD4+Pli5ciXCw8NlCbAqju8qB/tCuZizVJ0q7l1WecA2adIEixYtMn69qJx4wCoH\n+0L5mLNUSdET/5WaNGlivDplwYIFkgUkN61eI6/m6+7JOq6Ys2rIBTXEKCeriwwREZGt7LrVf6tW\nrVBQUCBFPDXiqbdysC/UhTmrbYq81X/jxo2h0+nM/q64uFiygIjIPsxZUiKLw2W3b9/GrVu3zP6U\nl5fLGaOktDoeq+YxXjJPCzmrhlxQQ4xy4pwMERFJhl+/THZhX5A1eJwogyouYSYiIrKV5ouMVsdj\n1TzGS9qlhlxQQ4xy0nyRISIi6XBOhuzCviBr8DhRBs7JEBGRS9J8kdHqeKyax3hJu9SQC2qIUU6a\nLzJERCQdzsmQXdgXZA0eJ8rAORkiInJJmi8yWh2PVfMYL2mXGnJBDTHKSfNFhoiIpMM5GbIL+4Ks\nweNEGTgnQ0RELkn2IlNQUIDY2Fh07twZISEhWLJkCQCgsLAQcXFx6NixI/r374+ioiJZ4tHqeKya\nx3hJXkrKWTXkghpilJPsRcbDwwPvvPMOTpw4gb179+Ldd9/FyZMnkZaWhri4OJw5cwZ9+/ZFWlqa\n3KERkRnMWaoLp8/JDBkyBJMmTcKkSZPwzTffwN/fH5cvX0ZMTAxOnTplsi3Hd5WDfaFdzFn1cWY/\nOLXI5Ofno0+fPjh+/Dhat26N69evAwCEEGjatKlxuRIPWOVgX2gTc1adnNkP7k7ZK+5/H/nQoUOx\nePFieHp6mvxOp9NBp9OZfZxOlwRA/9uSN4AIADG/LWf/9q8tyzkAptn0eCHuL1eOk8bE/Hc5JycH\n06ZNs/g10RCbAAAQAklEQVR7e5Yr11Uux8ba8vwsLWdj587/tl1bPNnZ2UhPTwcA6PV6kPbYm7NJ\nSUnGY8bb2xsRERF258SiRYvq9Hh7cjY2FpD6NaX25cp1tmyfDSAfTiecoKSkRPTv31+88847xnVB\nQUHCYDAIIYS4dOmSCAoKeuBxUoS7c+dORben1DaddOiQkyglZ5WYC1K354g2nZmvsg+XCSGQmJiI\nZs2a4Z133jGu/8tf/oJmzZphxowZSEtLQ1FR0QMTiTz1Vg72hXYwZ9VPU3My33//PXr37o2wsDDj\n6XVqaiqio6MRHx+P8+fPQ6/XIyMjA97e3qbB8oBVDPaFdjBn1U9TRaYupPhDZWdnG8dfldieUtvk\niwdZw9HHiRJzQer2HNEmP/FPREQuSfNnMmQf9gVZg8eJMvBMhoiIXJLmi4xW71uk5nshkXapIRfU\nEKOcNF9kiIhIOpyTIbuwL8gaPE6UgXMyRETkkjRfZLQ6HqvmMV7SLjXkghpilJPmiwwREUmHczJk\nF/YFWYPHiTJwToaIiFyS5ouMVsdj1TzGS9qlhlxQQ4xy0nyRISIi6XBOhuzCviBr8DhRBs7JEBGR\nS9J8kdHqeKyax3hJu9SQC2qIUU6aLzJERCQdzsmQXdgXZA0eJ8rAORkiInJJmi8yWh2PVfMYL2mX\nGnJBDTHKSfNFhoiIpMM5GbIL+4KsweNEGTgnQ0RELknzRUar47FqHuMl7VJDLqghRjlpvsgQEZF0\nOCdDdmFfkDV4nCgD52SIiMglab7IaHU8Vs1jvKRdasgFNcQoJ80XGSIikg7nZMgu7AuyBo8TZeCc\nDBERuSTNFxmtjseqeYyXtEsNuaCGGOWk+SJDRETS4ZwM2YV9QdbgcaIMnJMhIiKXpKgis3XrVjz2\n2GPo0KED5s2bJ8s+tToeq+YxXlIOuXNWDbmghhjlpJgiU15ejkmTJmHr1q3Izc3FunXrcPLkScn3\nm5OTo+j21NQmaYszclYNuaCGGOWkmCKzf/9+tG/fHnq9Hh4eHhg5ciQ2bdok+X6LiooU3Z6a2iRt\ncUbOqiEX1BCjnBRTZC5evIhWrVoZlwMDA3Hx4kUnRkRENWHOkjUUU2R0Op1T9pufn6/o9tTUJmmL\nM3JWDbmghhjl5O7sACq1bNkSBQUFxuWCggIEBgaabNOuXTtJDuyVK1cquj0lthkeHu7ASEiNnJWz\nSssFOdqra5vOzFfFfE6mrKwMQUFB2L59O1q0aIHo6GisW7cOnTp1cnZoRGQGc5asoZgzGXd3d/zz\nn//Ek08+ifLyckyYMIEHK5GCMWfJGoo5kyEiItejmIn/2kjxoS+9Xo+wsDBERkYiOjra5sePHz8e\n/v7+CA0NNa4rLCxEXFwcOnbsiP79+9t86aG5Nt98800EBgYiMjISkZGR2Lp1q9XtFRQUIDY2Fp07\nd0ZISAiWLFnikDiJasJ8Zb4aCRUoKysT7dq1E3l5eaKkpESEh4eL3NzcOrer1+vFtWvX7H78t99+\nKw4fPixCQkKM66ZPny7mzZsnhBAiLS1NzJgxo85tvvnmm2LBggV2xWgwGMSRI0eEEELcunVLdOzY\nUeTm5tY5TiJLmK/M16pUcSYj5Ye+RB1GC3v16gUfHx+TdZmZmUhMTAQAJCYmYuPGjXVusy5xBgQE\nICIiAgDQuHFjdOrUCRcvXqxznESWMF+Zr1WposhI9aEvnU6Hfv36oUuXLvjPf/5T5/YA4MqVK/D3\n9wcA+Pv748qVKw5pd+nSpQgPD8eECRPsPlXOz8/HkSNH0LVrV8niJGK+Ml+rUkWRkepDX7t27cKR\nI0ewZcsWvPvuu/juu+8c2r5Op3NI7C+++CLy8vKQk5OD5s2b49VXX7W5jdu3b2Po0KFYvHgxPD09\nJYmTCGC+Ml9NqaLIWPOhL3s0b94cAODr64tnn30W+/fvr3Ob/v7+uHz5MgDAYDDAz8+vzm36+fkZ\nD6znn3/e5jhLS0sxdOhQJCQkYMiQIZLFSQQwX5mvplRRZLp06YIff/wR+fn5KCkpwYYNGzBo0KA6\ntVlcXIxbt24BAO7cuYMvv/zS5AoRew0aNMj4ydyVK1caD5K6MBgMxv9/9tlnNsUphMCECRMQHByM\nadOmSRonEcB8Zb5W48yrDmzxxRdfiI4dO4p27dqJv/3tb3Vu7+zZsyI8PFyEh4eLzp0729XmyJEj\nRfPmzYWHh4cIDAwUH3zwgbh27Zro27ev6NChg4iLixPXr1+vU5vLly8XCQkJIjQ0VISFhYnBgweL\ny5cvW93ed999J3Q6nQgPDxcREREiIiJCbNmypc5xEtWE+cp8rcQPYxIRkWRUMVxGRETqxCJDRESS\nYZEhIiLJsMgQEZFkWGSIiEgyLDJERCQZVRSZa9euGW+b3bx5c+NttD09PTFp0iSH72/ZsmVYtWqV\n1dtnZ2dj4MCBDo+DSI0aN25sspyeno7Jkyc7JZb8/HyHfGiz0sqVK00+bJmSkoKTJ086rH1XpJhv\nxqxJs2bNcOTIEQDAnDlz4OnpiVdeeUWy/f3xj3+UrG1blJWVwd3d+V1UVFQEb29vZ4dBKlH9vlqO\nus+WXPlQUVEBNzfz77/T09MREhJivMWNo27UKYXS0lKUlJSgUaNGTo1DFWcy1VV+frTqGcSbb76J\nxMRE9O7dG3q9Hp9++in+/Oc/IywsDH/4wx9QVlYGADh06BBiYmLQpUsXPPXUU8b7AVX15ptvYsGC\nBQCAmJgYzJw5E127dkVQUBC+//77B7bX6XS4ffs2hg8fjk6dOmHs2LHG323fvh1RUVEICwvDhAkT\nUFJSAuD+FzAVFhYCAA4ePIjY2FjjvhMSEtCzZ08kJibixIkTiI6ORmRkJMLDw/F///d/jvozWm39\n+vUIDQ3FwoULcfXqVdn3T+pW9fPe+fn5+P3vf4/w8HD069fPeI+zpKQkfPLJJ8btKs+GsrOz0atX\nLwwePBghISEoLi7GM888g4iICISGhiIjI+OB/R06dAjh4eGIiIjAe++9Z1xf/YxqwIAB+Pbbb437\n+/Of/4yIiAjs2bMHb7/9NqKjoxEaGmp80/nxxx/j4MGDGDNmDKKionDv3j3ExMTg0KFDAIB169Yh\nLCwMoaGhmDlzpslzmTVrFiIiItC9e3f8/PPPdf6bWqOwsBAhISGYOHEiDh48KMs+zVFlkbEkLy8P\nO3fuRGZmJsaOHYu4uDgcPXoUDRo0wOeff47S0lJMnjwZn3zyCQ4ePIjk5GS8/vrrD7RT9S6nOp0O\n5eXl2LdvHxYtWoQ5c+Y8sL0QAkeOHMHixYuRm5uLs2fPYvfu3bh37x6Sk5ORkZGBo0ePoqysDP/6\n17+M7Vpy6tQpbN++HWvWrMGyZcswbdo0HDlyBIcOHXLIjQZtNXHiRGzZsgXFxcXo3bs3hg8fjm3b\nttXpuz3Idd29e9c4vB0ZGYnZs2cbj/fJkycjOTkZP/zwA8aMGYMpU6YAqPns58iRI1iyZAlOnTqF\nLVu2oGXLlsjJycGxY8fw1FNPPbD/5ORkvPvuu8jJyakxzqr7KC4uRrdu3ZCTk4MePXpg0qRJ2L9/\nP44dO4a7d+8iKysLw4YNQ5cuXbB27VocPnwYDz/8sPG14tKlS5g5cyZ27tyJnJwcHDhwwPgdOsXF\nxejevTtycnLQu3dv2c5+/P39cfr0acTGxuL1119HVFQUli5danxzKxeXKTI6nQ5/+MMfUK9ePYSE\nhKCiogJPPvkkACA0NBT5+fk4c+YMTpw4gX79+iEyMhJ//etfrfqei+eeew4AEBUVhfz8fLPbREdH\no0WLFtDpdIiIiEBeXh5Onz6Ntm3bon379gDuf9lQ5Tunmp7HoEGDUL9+fQBA9+7d8be//Q3z589H\nfn4+Hn74YWv/JA4VGBiIWbNmITc3F8nJyUhOTsazzz7rlFhI2Ro0aIAjR44Yf9566y3jG5K9e/di\n9OjRAICxY8eaHRmoLjo6Gm3atAEAhIWF4auvvsLMmTPx/fffw8vLy2TboqIi3LhxAz179gQAJCQk\nWBVzvXr1MHToUOPyjh070K1bN4SFhWHHjh3Izc01/q76myshBA4cOICYmBg0a9YM9erVw5gxY4y5\n/tBDD+GZZ54BAPzud7+z+BoihYceeggjRozAtm3bsGnTJnz11Vdo2bKl2REcqbhMkQHu/0EBwM3N\nDR4eHsb1bm5uKCsrgxACnTt3Nh78R48eter7tytf8OvVq2ccdrO0TdXtqr87E0IY17m7u6OiogIA\ncO/ePZPtGjZsaPz/qFGjsHnzZjRo0ABPP/00du7cWWu8wP3bq1e+k1y2bBnee+89REZGIioqCgaD\nAU8++SQiIyPxwgsvYP/+/cZtN2/ejFmzZhm3rWr//v148cUXMXXqVIwcORKpqalWxULaZu5Fubqq\n+VBRUWEcVgZgMqfQoUMHHDlyBKGhoZg1axbefvttq/dddR+Aad5VnpVUrn/ppZfwySef4OjRo0hJ\nSTHZ1twoRE25bu61qCbjx49HZGQkBgwYgAsXLiAiIsLmPM7KyjK29/PPP2PBggUYOHAghBBYt26d\nrF8V4PxZZQexZugmKCgIv/zyC/bu3Ytu3bqhtLQUP/74I4KDg+1qryY6nQ5BQUHIz8/HTz/9hHbt\n2mHVqlXo06cPgPtzMgcPHsRTTz1lMhZdfb95eXlo27YtJk+ejPPnz+PYsWPG+ZuatGrVynixRKU/\n/elPxv9v27bN5HdVtx04cCDmzp1rXP7yyy8xffp0NG/eHM8//zyWLl2qiAsSSH2eeOIJrF+/HmPH\njsWaNWvQu3dvAPfz4dChQxg+fDgyMzNRWlpq9vEGgwE+Pj4YM2YMmjRpguXLl5v83tvbG97e3ti1\naxd69OiBNWvWGH+n1+vxr3/9C0IIXLhwweL3vFQWlGbNmuH27dv46KOPEB8fDwDw9PTEzZs3TbbX\n6XSIjo7GlClTcO3aNXh7e2P9+vXGoUBbffDBBybL1Yf9rM3jmzdvYty4cTh9+jTGjRuHLVu2GC9Y\nkJMqXymqzpeY+3/Vbaoue3h44OOPP8aUKVNw48YNlJWV4eWXXzZbZCzNmVh6F2Nuff369bFixQoM\nHz4cZWVliI6OxsSJEwEAs2fPxoQJE+Dl5YWYmBiLzyMjIwOrVq2Ch4cHmjdvbnYOSWqPPPIIsrKy\nTL5Sl8gSc7lXuW7p0qVITk7G3//+d/j5+WHFihUA7l8KPHjwYEREROCpp54yuQy6anvHjh3D9OnT\n4ebmhoceesg4x1nVihUrMH78eOh0OvTv39/4+J49e6Jt27YIDg5Gp06d8Lvf/c7sPry9vZGSkoKQ\nkBAEBASga9euxt8lJSVh4sSJaNiwIXbv3m1cHxAQgLS0NMTGxkIIgQEDBhgvSqr+uiTnt1pOmzYN\nMTExsu3PHN7qn4iIJONSczJERKQsLDJERCQZFhkiIpIMiwwREUmGRYaIiCTDIkNERJJhkSEiIsmw\nyBARkWT+H5YlVY/jFClJAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x49c3450>"
]
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.16, Page Number: 57"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"c1 = 10 #Capacity of each of 2 generators(MW)\n",
"c2 = 5 #Capacity of 3rd generator(MW)\n",
"\n",
"#Calculation:\n",
"C = 2*c1+c2 #Installed capacity(MW)\n",
"A = (1/2)*(20+4) #Avg load, seen from the curve(MW)\n",
"PF = A/C #plant factor\n",
"E = 8760*A #Units generated per annum(MWh)\n",
"LF = A/20 #Load factor\n",
"PUF = 20/C #Plant capacity factor\n",
"\n",
"#Results:\n",
"print \"(i) Installed capacity is \",C,\"MW\"\n",
"print \"(ii) Plant factor is \",round(PF*100,1),\"%\"\n",
"print \"(iii) Units generated per annum is \",(E/1000),\"* 10^3 kWh\"\n",
"print \"(iv) Load factor is \",round(LF*100,1),\"%\"\n",
"print \"(V) Utilisation factor is \",round(PUF*100,1),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Installed capacity is 25 MW\n",
"(ii) Plant factor is 48.0 %\n",
"(iii) Units generated per annum is 105.12 * 10^3 kWh\n",
"(iv) Load factor is 60.0 %\n",
"(V) Utilisation factor is 80.0 %\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.17, Page Number: 57 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration:\n",
"n = 0.72 #efficiency of the load\n",
"\n",
"#Calculation:\n",
"Ma = (10*0.746/0.72)* 0.65 + 5 * 0.60 #kW\n",
"Mb = (7.5*0.746/0.72)*0.75+4*0.60 #kW\n",
"Mc = (15*0.746/0.72)*0.65 #kW\n",
"Md = (5*0.746/0.72)*0.75+2*0.60 #kW\n",
"\n",
"SM = Ma+Mb+Mc+Md #Sum of maximum demands(kW)\n",
"\n",
"#The diversity factor between consumers of this type of service is 1\u00b75 from above table.\n",
"M1 = SM/1.5 #Maximum demand on transformer 1(kW)\n",
"\n",
"#In a similar manner, the other transformer loads are determined to be\n",
"# Total Simultaneous\n",
"#Transformer 2 26 kW 7\u00b743 kW\n",
"#Transformer 3 29\u00b713 kW 19\u00b740 kW\n",
"\n",
"#The diversity factor between transformers is 1\u00b73\n",
"M2 = 7.43; M3 = 19.40\n",
"MF = (M1+M2+M3)/1.3 #Maximum load on feeder(kW)\n",
"\n",
"\n",
"#Results:\n",
"print \"The maximum load on the feeder is \",round(MF,2),\"kW\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum load on the feeder is 37.64 kW\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.18, Page Number: 61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"%matplotlib inline\n",
"\n",
"\n",
"#Calculation:\n",
"E = 10**3*(20*2+40*3+50*5+35*3+70*3+40*2+20*6) #Units generated per day(kWh)\n",
"A = E/24 #Average load(kW)\n",
"LF = A/(70*10**3) #Load factor\n",
"\n",
"n1 = linspace(0,8,10);\n",
"m1 = linspace(20,20,10);\n",
"plot(n1,m1);\n",
"\n",
"hold(True);\n",
"n2 = linspace(8,11,10);\n",
"m2 = linspace(40,40,10);\n",
"plot(n2,m2,'b');\n",
"\n",
"n3 = linspace(11,16,10);\n",
"m3 = linspace(50,50,10);\n",
"plot(n3,m3,'b');\n",
"\n",
"n4 = linspace(16,19,10);\n",
"m4 = linspace(35,35,10);\n",
"plot(n4,m4,'b');\n",
"\n",
"n5 = linspace(19,22,10);\n",
"m5 = linspace(70,70,10);\n",
"plot(n5,m5,'b');\n",
"\n",
"n6 = linspace(22,24,10);\n",
"m6 = linspace(40,40,10);\n",
"plot(n6,m6,'b');\n",
"\n",
"\n",
"ylim(0,100);\n",
"xlim(0,24);\n",
"grid(linewidth=0.5);\n",
"ylabel(\"Load in MW ------>\");\n",
"xlabel(\"Time in hours ----->\");\n",
"title(\"Daily Load Curve\");\n",
"\n",
"#Results:\n",
"print \"Load factor is \",round(LF*100,2),\"%\"\n",
"print \"\"\"\\nOperational schedule: Referring to the load curve shown\n",
"below, the operational schedule will be as under :\n",
" (i) Set No. 1 will run for 24 hours.\n",
" (ii) Set No. 2 will run from 8.00 hours to midnight.\n",
" (iii)Set No. 3 will run from 11.00 hours to 16 hours and \n",
" again from 19 hours to 22 hours.\"\"\"\n",
"print \"\\nThe Load curve is shown below:\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"Load factor is "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 55.06 %\n",
"\n",
"Operational schedule: Referring to the load curve shown\n",
"below, the operational schedule will be as under :\n",
" (i) Set No. 1 will run for 24 hours.\n",
" (ii) Set No. 2 will run from 8.00 hours to midnight.\n",
" (iii)Set No. 3 will run from 11.00 hours to 16 hours and \n",
" again from 19 hours to 22 hours.\n",
"\n",
"The Load curve is shown below:\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"WARNING: pylab import has clobbered these variables: ['tri', 'axes', 'legend', 'stackplot', 'figure', 'rc_context', 'quiver', 'streamplot', 'rc', 'text', 'colors', 'contour', 'axis', 'colorbar', 'test', 'rcdefaults', 'table']\n",
"`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEZCAYAAABxbJkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVHX6B/DPQbFULoMkF0EdM294AU3J8gaLWJqapqKW\nCKhsWlZkZebPNrU2p1pvmbWuorBiKmutEiiWFabiJQvTRMULo4iAJiAqeQHP7w9jVpwzAwPMhfl+\n3q/XvOQMw5yHT9M8zPeZc0aSZVkGEREJycHaBRARkfWwCRARCYxNgIhIYGwCREQCYxMgIhIYmwAR\nkcDYBKjeO3fuHJydnVHxbuegoCDExsZauSrDHBwccObMGWuXQQSATYBsgFqtRpMmTeDi4gI3Nzf0\n6dMHK1asQHUPYWnVqhWuXr0KSZIAAJIk6b42RVxcHPr162fyz9W17du3o3///nBxcYGHhweCgoLw\n9ddfW7ssslNsAmR1kiQhOTkZJSUlOHfuHGbNmoUPP/wQkydPtnZpFrdp0yaEhYUhMjISubm5uHjx\nIubPn1+jJiDLcrUbKYmLTYBsirOzM4YNG4aNGzciPj4eR48eBQCkpKSge/fucHV1RatWrTBv3jzd\nz2i1Wjg4OODOnTuV7uvWrVto1qwZfvvtN911Fy9eRNOmTXH58mWT6kpPT0evXr2gUqkQGBiIvXv3\n6r63Zs0a+Pn5wcXFBW3btsW//vWvSj/78ccfo0WLFvD19cXq1asN7kOWZcyYMQN/+9vfMGnSJDg7\nOwMA+vfvr7vPuXPnIjw83ODvHhQUhDlz5qBPnz5o2rQpPv74Y/Tq1avSfhYvXoxnnnkGAHDz5k28\n8cYbaN26Nby8vDBt2jTcuHHDpGyofmMTIJvUq1cv+Pr6Yvfu3QAAJycnJCQk4MqVK0hJScHnn3+O\nLVu2GL2PRo0aYfz48UhISNBdt379egwcOBDu7u7VrqWwsBBPP/00YmJiUFhYiBkzZuDpp59GYWEh\nAMDT0xMpKSkoKSnBmjVr8NprryEjIwMAkJqaioULF2LHjh3IysrCjh07DO7nxIkTOH/+PEaPHm3w\nNtVZ5kpISMCqVatw7do1TJ06FSdOnMCpU6d03//iiy/w/PPPAwBmzZqFU6dO4ddff8WpU6eQm5uL\n+fPnVysXsg9sAmSzWrRooXuiHTBgADp37gwA6Nq1K8aNG4edO3dWeR8TJ07E+vXrddtr166t9Jd0\ndaSkpKBDhw54/vnn4eDggHHjxqFjx466JZohQ4agTZs2AO7+1T5o0CDs2rULAJCYmIhJkybBz88P\nTZo0qfQK5n4Vr068vb0N3qaq5R1JkhAZGYlOnTrBwcEBLi4ueOaZZ3QZnDx5EidOnMDw4cMhyzJW\nrlyJRYsWQaVSwcnJCW+//TY2bNhQ/XCo3mMTIJuVm5uLZs2aAQD279+P4OBgeHh4QKVSYcWKFdVa\n0nnsscfQuHFjpKWl4fjx4zh9+jSGDx9uUh0XLlxAq1atKl3XunVrXLhwAQCwbds29O7dG+7u7nBz\nc8PWrVt1teXl5aFly5a6n7v/fu5V8eokLy/PpPrud+/+AOC5557TNYEvvvgCI0eOxIMPPohLly6h\ntLQUjz76KNzc3ODm5obBgwfj999/r9X+qX5hEyCb9NNPPyE3Nxd9+/YFcPeJbMSIETh//jyKi4sx\ndepUvRmAIREREUhISMDatWsxZswYNGrUyKRafHx8cPbs2UrXnT17Fj4+Prh58yZGjRqFmTNn4uLF\niygqKsKQIUN0f7F7e3vj3Llzup+79+v7dejQAS1btsSmTZsM3sbJyQmlpaW67fz8fL3b3L9kNHDg\nQFy6dAm//vorNmzYgOeeew4A8NBDD6Fx48bIzMxEUVERioqKUFxcjJKSEiNpkL1hEyCbUPGkWVJS\nguTkZIwfPx7h4eG6JaBr167Bzc0NjRo1woEDB/DFF18YXR+/d9lkwoQJ+Oqrr7Bu3TpMnDixyjpu\n3ryJGzdu6C5DhgxBVlYW1q9fj7KyMmzcuBHHjx/H0KFDcevWLdy6dQsPPfQQHBwcsG3bNnzzzTe6\n+wsLC0NcXByOHTuG0tJSo8tBkiRh0aJFeO+99xAXF4eSkhLcuXMHu3fvxgsvvAAA8Pf3x48//oic\nnBxcuXIFCxYsMPq7A4CjoyPGjBmDN954A0VFRQgNDQVw93iF6OhoxMTE4NKlSwDuvvq6t34SgExk\nZWq1Wm7cuLHs7Owsu7q6yk888YT82WefyXfu3NHdZtOmTXLr1q1lZ2dneejQofLLL78sh4eHy7Is\ny9nZ2bKDg4NcXl4uy7IsBwUFybGxsZX2ERISIrdp08ZoHXFxcbIkSZUuFfe7e/du+dFHH5VdXV3l\nnj17ynv27NH93PLly2VPT09ZpVLJ4eHh8vjx4+V33nlH932NRiN7eXnJPj4+8urVq2UHBwf59OnT\nButITU2V+/XrJzs5OcnNmzeXg4OD5a1bt+q+/9JLL8kqlUpu166dvHLlyip/d1mW5V27dsmSJMnT\np0+vdP2NGzfk2bNnyw8//LDs4uIid+rUSV62bJnRnMi+SLJsnjcST5o0CSkpKfDw8MCRI0cA3H2X\nxdixY3H27Fmo1WokJiZCpVIBABYsWIDVq1ejQYMG+OSTTzBo0CBzlEWCmjx5Mnx8fPjOF6L7mG05\nKCoqCqmpqZWu02g0CA0NRVZWFkJCQqDRaAAAmZmZ2LhxIzIzM5GamooXX3yx2uu9RFXRarX46quv\nhDz4jKgqZmsC/fr1g5ubW6XrkpKSEBERAeDusG7z5s0AgC1btmD8+PFwdHSEWq3GI488ggMHDpir\nNBLIO++8g65du2LmzJlo3bq1tcshsjkWHQwXFBTA09MTwN0DbAoKCgDcfQuer6+v7na+vr7Izc21\nZGlkp9577z1cvXoVb7/9trVLIbJJVnt3UFUn+arJCcCIiMg0DS25M09PT+Tn58PLywt5eXnw8PAA\ncPd92Dk5ObrbnT9/Hj4+Pno/7+PjoztAh4iIqsff3x+HDh1S/J5FXwkMHz4c8fHxAID4+HiMGDFC\nd/2GDRtw69YtZGdn4+TJkwgMDNT7+QsXLujOjMjL/y7vvvuu1WuwxQtzYS7M5O7l119/Nfi8bLZX\nAuPHj8fOnTvx+++/o2XLlpg/fz5mzZqFsLAwxMbG6t4iCgB+fn4ICwuDn58fGjZsiM8++4zLQSbQ\narXWLsEmMRdlzEWfyJmYrQnce9Kuexk6i+Ls2bMxe/Zsc5VDREQKeNoIOxAZGWntEmwSc1HGXPSJ\nnInZjhg2B0mSUI/KJSKyCcaeO/lKwA6kpaVZuwSbxFyUMRd9ImfCJkBEJDAuBxER2TkuBxERkSI2\nATsg8nqmMcxFGXPRJ3ImbAJERALjTICIyM5xJkBERIrYBOyAyOuZxjAXZcxFn8iZsAkQEQmMMwEi\nIjvHmQARESliE7ADIq9nGsNclDEXfSJnwiZARCQwzgSIiOwcZwJERKSITcAOiLyeaQxzUcZc9Imc\nCZsAEZHAOBMgIrJznAkQEZEiNgE7IPJ6pjHMRRlz0SdyJmwCREQC40yAiMjOcSZARESK2ATsgMjr\nmcYwF2XMRZ/ImbAJEBEJjDMBIiI7x5kAEREpYhOwAyKvZxrDXJQxF30iZ8ImQEQkMM4EiIjsHGcC\nRESkiE3ADoi8nmkMc1HGXPSJnAmbABGRwKwyE1iwYAESEhLg4OCArl27Ys2aNbh+/TrGjh2Ls2fP\nQq1WIzExESqVqnKxnAkQEZnMpmYCWq0WK1euxC+//IIjR46gvLwcGzZsgEajQWhoKLKyshASEgKN\nRmPp0oiIhGPxJuDi4gJHR0eUlpairKwMpaWlaNGiBZKSkhAREQEAiIiIwObNmy1dWr0l8nqmMcxF\nGXPRJ3ImFm8CzZo1w+uvv45WrVqhRYsWUKlUCA0NRUFBATw9PQEAnp6eKCgosHRpRETCaWjpHZ4+\nfRpLliyBVquFq6srxowZg4SEhEq3kSQJkiQp/nxkZCTUajUAQKVSISAgAEFBQQD+1825ze0KaWlp\nNlMPt213OygoyKbqqe12Wloa4uLiAED3fGmIxQfDGzduxLfffotVq1YBANauXYt9+/bh+++/xw8/\n/AAvLy/k5eUhODgYx48fr1wsB8NERCazqcFwx44dsW/fPvzxxx+QZRk7duyAn58fhg0bhvj4eABA\nfHw8RowYYenS6q2KvwCoMuaijLnoEzkTiy8H+fv7Y+LEiejZsyccHBzQo0cP/PWvf8XVq1cRFhaG\n2NhY3VtEiYjIvHjuICIiO2dTy0FERGQ72ATsgMjrmcYwF2XMRZ/ImbAJEBEJjDMBIiI7x5kAEREp\nYhOwAyKvZxrDXJQxF30iZ8ImQEQkMM4EiIjsHGcCRESkiE3ADoi8nmkMc1HGXPSJnAmbABGRwDgT\nICKyc5wJEBGRIjYBOyDyeqYxzEUZc9EnciZsAkREAuNMgIjIztXJTCA/Px937typs6KIiMj6qtUE\nCgsL0aZNGyQlJZm7HqoBkdczjWEuypiLPpEzqVYTWLduHUJDQxEbG2vueoiIakWSTL8EB9fs52pz\nsRXVmgn06NEDW7ZswbBhw7Bt2zZ4e3tbojY9nAkQEZmuVjOBgwcPonnz5mjZsiXCw8MRFxdX1/UR\nEZGVVNkEVq1ahUmTJgEAwsPD8e9//9vsRZFpRF7PNIa5KGMu+kTOxGgTuH79OrZv346RI0cCADw8\nPNChQwehAyMisidGZwK3b99GYWEhPD09ddeVlJQAAFxcXMxf3X04EyAiMl2NZwKOjo6VGkBycjJc\nXFys0gCIiKjumXTaiHfeecdcdVAtcHlOGXNRxlz0iZwJzx1ERCQwk84ddODAAQQGBpqzHqM4EyAi\nMl2dfZ7AqlWr6qQgIiKyDSY1gZ9++slcdVAtiLyeaQxzUcZc9ImciUlNwMPDw1x1EBGRFZg0E8jL\ny7PaeYMAzgSIiGqizmYCTz/9dJ0UREREtsGkJsC/wm2TyOuZxjAXZcxFn8iZmNQEoqOjzVUHERFZ\ngUlNoEGDBnWy0+LiYowePRqdOnWCn58f9u/fj8LCQoSGhqJ9+/YYNGgQiouL62RfIggKCrJ2CTaJ\nuShjLvpEzsSkJvDPf/6zTnb66quvYsiQITh27BgOHz6Mjh07QqPRIDQ0FFlZWQgJCYFGo6mTfRER\nkWEWnwlcuXIFu3bt0n1GQcOGDeHq6oqkpCREREQAACIiIrB58+Za70sUIq9nGsNclDEXfSJnYlIT\nSE5OrvUOs7Oz0bx5c0RFRaFHjx6Ijo7G9evXUVBQoDtjqaenJwoKCmq9LyIiMs6k4wSGDh1a60Zw\n8OBBPP7440hPT0evXr0QExMDZ2dnfPrppygqKtLdrlmzZigsLKxcLI8TICIymbHnzoam3FFubm6t\ni/H19YWvry969eoFABg9ejQWLFgALy8v5Ofnw8vLC3l5eQaPTo6MjIRarQYAqFQqBAQE6IY6FS/p\nuM1tbnNb5O20tDTd58FXPF8aYtIrgUmTJmH16tXVvblB/fv3x6pVq9C+fXvMnTsXpaWlAAB3d3e8\n9dZb0Gg0KC4u1hsO85WAsrS0NN0Dgf6HuShjLvrsPZM6eyXw0ksv1UlBy5Ytw/PPP49bt26hbdu2\nWLNmDcrLyxEWFobY2Fio1WokJibWyb6IiMgwk14J9OjRA7/88os56zGKrwSIiExXZ+cO4hMwEZF9\nMakJvPvuu+aqg2qhYiBElTEXZcxFn8iZmNQERowYYa46iIjICkyaCVgbZwJERKars5kAERHZFzYB\nOyDyeqYxzEUZc9EnciZsAkREAuNMgIjIztVoJrB48WIcOHAAZWVlZiuMiIisy2ATOH/+PGJiYtC8\neXP0798fs2fPRnJyst6ZPcn6RF7PNIa5KGMu+kTOxOC5gxYuXAgAuHnzJg4ePIi9e/di9erViI6O\nhkqlwrFjxyxWJBERmUeVM4Hi4mLs3bsX6enpSE9PR3FxMbp164Y1a9ZYqkYdzgSIiExn7LnTYBOI\njo5GZmYmnJ2dERgYiMcffxy9e/eGm5ubWYs1hk2AiMh0NRoMnzt3Djdv3oSXlxd8fHzg4+MDlUpl\ntiKp5kRezzSGuShjLvpEzsTgTGD79u24c+cOjh49ir1792LRokU4cuQI3N3d0bt3b8yfP9+SdRIR\nkRlU6ziBnJwcpKenY8+ePUhOTsbly5dx5coVS9RXCZeDiIhMV6OZwNKlS5Geno69e/eiYcOGeOKJ\nJ9CnTx888cQT6NKlCxo0aGDWopWwCRARma5GMwGtVouwsDDs27cPZ86cQUJCAqZNmwZ/f3+rNAAy\nTOT1TGOYizLmok/kTAzOBObMmQPgbgdROkCsWbNm5quKyIokydoV2C6+ELc/BpeDHBwc4Ovrq/hX\nvyRJOHPmjNmLU9ovl4OIiExj7LnT4CuBV155Bd9//z369u2LcePGoV+/fpD4JxIRkV0xOBNYsmQJ\nDh06hNGjRyMhIQEBAQF48803kZ2dbcn6qBpEXs80hrkoYy76RM7E6OcJODg44C9/+Qs++ugjTJ06\nFXFxcfj2228tVRsREZmZwZnAtWvXsGXLFmzcuBGXLl3Cs88+i7Fjx6JVq1aWrlGHMwEiItPV6DiB\npk2bol27dhg7dizat29f6Y4kScKzzz5rvooNYBMgIjJdjZpAZGSk0UEwzyJqO9LS0hAUFGTtMmwO\nc1HGXPTZeyY1endQXFycueohIiIbwc8YJiKyczU6bQQREdk/NgE7IPJ7nI1hLsqYiz6RMzE4E7jX\nnj17oNVqUVZWBuDuS4uJEyeatTAiIjK/KmcCEyZMwJkzZxAQEFDpPELLli0ze3H340yAiMh0NXqL\naIVOnTohMzPTJs4bxCZARGS6Wg2Gu3Tpgry8vDoviuqOyOuZxjAXZcxFn8iZVDkTuHTpEvz8/BAY\nGIgHHngAwN2ukpSUZPbiiIjIvKpcDjLUIa1xdB2Xg4iITFermYC5lJeXo2fPnvD19cXXX3+NwsJC\njB07FmfPnoVarUZiYiJUKlXlYtkEiIhMVqOZQJ8+fQAATk5OcHZ2rnRxcXGpdVFLly6Fn5+fbuCs\n0WgQGhqKrKwshISEQKPR1HofohB5PdMY5qKMuegTORODTWDPnj0A7p5S+urVq5UuJSUltdrp+fPn\nsXXrVkyZMkXXnZKSkhAREQEAiIiIwObNm2u1DyIiqppVloPGjBmD2bNno6SkBP/4xz/w9ddfw83N\nDUVFRQAAWZbRrFkz3bauWC4HERGZzKbOHZScnAwPDw90797d8KBCkmziuAQiIntXrdNG1KX09HQk\nJSVh69atuHHjBkpKShAeHg5PT0/k5+fDy8sLeXl58PDwUPz5yMhIqNVqAIBKpUJAQIDunUoV63qi\nbVdcZyv1GNqWpIp6g/7819zbSwAE1OjnZdn6eYn+eLHk9v3ZmHt/d//Grdhn0J//1uV2GoC4P7fV\nMMaqp5LeuXOnbjlo5syZcHd3x1tvvQWNRoPi4mK94TCXg5Sl2fkHYtQUc1HGXPTZeyY1eouok5OT\nwSUZSZJqPRwG7jaBhQsXIikpCYWFhQgLC8O5c+f4FlEiojpUq+ME5syZgxYtWmDChAkAgHXr1uHC\nhQt477336r7SKrAJEBGZrlaD4aSkJLz44otwcXGBi4sLpk2bhi1bttR5kVRz965n0v8wF2XMRZ/I\nmVTZBJo2bYqEhASUl5ejvLwc69atg5OTkyVqIyIiM6tyOSg7Oxuvvvoq0tPTAdw9knjp0qW6d+hY\nEpeDiIhMZ5PnDqoJNgEiItMZe+6s8jiBP/74A7GxscjMzMSNGzd0169evbruKqRasfe3t9UUc1HG\nXPSJnEmVM4Hw8HAUFBQgNTUVAwYMQE5ODmcCRER2osrloICAABw6dAjdunXD4cOHcfv2bfTt2xf7\n9++3VI06XA4iIjJdrZaDGjVqBABwdXXFkSNH4OXlhUuXLtVthURk8+rT6bz4t2L1VbkcFB0djcLC\nQrz//vsYPnw4/Pz8MHPmTEvURtUk8nucjWEuymqaiyzXn4ulMrEHVb4SiI6OBgAMGDAA2dnZZi+I\niIgsp8qZQHFxMebNm4cff/wRwN0z4P3tb3+Dq6urRQq8F2cCRESmq9VpIyZNmgQXFxf85z//QWJi\nIpydnREVFVXnRRIRkeVV2QROnz6NefPm4eGHH0bbtm0xd+5cnD592hK1UTWJvJ5pDHNRxlz0iZxJ\nlU2gcePG2LVrl2579+7daNKkiVmLIiIiy6hyJnDo0CFMnDgRV65cAQC4ubkhPj4e/v7+FinwXpwJ\nEBGZrk7OHVTRBFxdXbFkyRLExMTUXYXVxCZARGS6OvmgeVdXV907ghYuXFg3lVGdEHk90xjmooy5\n6BM5k2o3ASIisj81OpV0y5YtkZOTY456jOJyEBGR6Wp07iBjHzRfWlpaN5UREZFVGVwOunbtGq5e\nvap4KS8vt2SNVAWR1zONYS7KmIs+kTPhTICISGD8eEkiIjtXJ28RJSIi+8MmYAdEXs80hrkoYy76\nRM6ETYCISGCcCRAR2TnOBIiISBGbgB0QeT3TGOaijLnoEzkTNgEiIoFxJkBEZOc4EyAiIkVsAnZA\n5PVMY5iLMuaiT+RM2ASIiATGmQARkZ3jTICIiBRZvAnk5OQgODgYnTt3RpcuXfDJJ58AAAoLCxEa\nGor27dtj0KBBKC4utnRp9ZbI65nGMBdlzEWfyJlYvAk4Ojpi8eLFOHr0KPbt24fly5fj2LFj0Gg0\nCA0NRVZWFkJCQqDRaCxdGhGRcKw+ExgxYgSmT5+O6dOnY+fOnfD09ER+fj6CgoJw/PjxSrflTICI\nyHTGnjut2gS0Wi0GDBiA3377Da1atUJRUREAQJZlNGvWTLddgU2AiMh0NfqgeXO7du0aRo0ahaVL\nl8LZ2bnS9yRJMvgh95IUCUD955YKQACAoD+30/78V7TtiutspR7D2z/8AAQF3d2uWIc11/aSJUsQ\nEBBgsf3Vl+2K62ylHlvYvj8ba9dTF79PXFwcAECtVsMYq7wSuH37NoYOHYrBgwcjJiYGANCxY0ek\npaXBy8sLeXl5CA4O5nJQNaWlpekeCPQ/zEUZc9Fn75nY1HKQLMuIiIiAu7s7Fi9erLt+5syZcHd3\nx1tvvQWNRoPi4mK94TCbABGR6WyqCezevRv9+/dHt27ddEs+CxYsQGBgIMLCwnDu3Dmo1WokJiZC\npVJVLpZNgIjIZDbVBGqDTUCZvb+UrSnmooy56LP3THjEMBERKeIrASIiO8dXAkREpIhNwA6IfN4T\nY5iLMuaiT+RM2ASIiATGmQARkZ3jTICIiBSxCdgBkdczjWEuypiLPpEzYRMgIhIYZwJERHaOMwEi\nIlLEJmAHRF7PNIa5KGMu+kTOhE2AiEhgnAkQEdk5zgSIiEgRm4AdEHk90xjmooy56BM5EzYBIiKB\ncSZARGTnOBMgIiJFbAJ2QOT1TGOYizLmok/kTNgEiIgExpkAEZGd40yAiIgUsQnYAZHXM41hLsqY\niz6RM2ETICISGGcCRER2jjMBIiJSxCZgB0RezzSGuShjLvpEzoRNgIhIYJwJEBHZOc4EiIhIEZuA\nHRB5PdMY5qKMuegTORM2ASIigXEmQERk5zgTICIiRTbVBFJTU9GxY0e0a9cOH374obXLqTdEXs80\nhrkoYy76RM7EZppAeXk5pk+fjtTUVGRmZmL9+vU4duyYtcuqFw4dOmTtEmwSc1HGXPSJnInNNIED\nBw7gkUcegVqthqOjI8aNG4ctW7ZYu6x6obi42Nol2CTmooy56BM5E5tpArm5uWjZsqVu29fXF7m5\nuVasiIjI/tlME5Akydol1FtardbaJdgk5qKMuegTOZOG1i6ggo+PD3JycnTbOTk58PX1rXSbtm3b\nslkYEB8fb+0SbBJzUcZc9NlzJv7+/ga/ZzPHCZSVlaFDhw747rvv0KJFCwQGBmL9+vXo1KmTtUsj\nIrJbNvNKoGHDhvj000/x5JNPory8HJMnT2YDICIyM5t5JUBERJZnM4PhqvBAMmVqtRrdunVD9+7d\nERgYaO1yrGbSpEnw9PRE165dddcVFhYiNDQU7du3x6BBg4R7G6BSJnPnzoWvry+6d++O7t27IzU1\n1YoVWkdOTg6Cg4PRuXNndOnSBZ988gkAcR8v9aIJ8EAywyRJQlpaGjIyMnDgwAFrl2M1UVFRek9o\nGo0GoaGhyMrKQkhICDQajZWqsw6lTCRJwowZM5CRkYGMjAw89dRTVqrOehwdHbF48WIcPXoU+/bt\nw/Lly3Hs2DFhHy/1ognwQDLjuKIH9OvXD25ubpWuS0pKQkREBAAgIiICmzdvtkZpVqOUCcDHi5eX\nFwICAgAATk5O6NSpE3Jzc4V9vNSLJsADyQyTJAkDBw5Ez549sXLlSmuXY1MKCgrg6ekJAPD09ERB\nQYGVK7INy5Ytg7+/PyZPnizMkochWq0WGRkZeOyxx4R9vNSLJsBjAwzbs2cPMjIysG3bNixfvhy7\ndu2ydkk2SZIkPo4ATJs2DdnZ2Th06BC8vb3x+uuvW7skq7l27RpGjRqFpUuXwtnZudL3RHq81Ism\nUJ0DyUTl7e0NAGjevDlGjhwp9Fzgfp6ensjPzwcA5OXlwcPDw8oVWZ+Hh4fuCW7KlCnCPl5u376N\nUaNGITw8HCNGjAAg7uOlXjSBnj174uTJk9Bqtbh16xY2btyI4cOHW7ssqystLcXVq1cBANevX8c3\n33xT6Z0gohs+fLjuKND4+Hjd/+wiy8vL03393//+V8jHiyzLmDx5Mvz8/BATE6O7XtjHi1xPbN26\nVW7fvr3ctm1b+YMPPrB2OTbhzJkzsr+/v+zv7y937txZ6FzGjRsne3t7y46OjrKvr6+8evVq+fLl\ny3JISIjcrl07OTQ0VC4qKrJ2mRZ1fyaxsbFyeHi43LVrV7lbt27yM888I+fn51u7TIvbtWuXLEmS\n7O/vLwcEBMgBAQHytm3bhH288GAxIiKB1YvlICIiMg82ASIigbEJEBEJjE2AiEhgbAJERAJjEyAi\nEhibAFnLj+EcAAAElklEQVTN5cuXdac09vb21p3i2NnZGdOnT6/z/a1YsQJr166t9u3T0tIwbNiw\nOq+DyJbYzCeLkXjc3d2RkZEBAJg3bx6cnZ0xY8YMs+3vhRdeMNt9m6KsrAwNG1r/f73i4mKoVCpr\nl0FWxlcCZDMqjlu89y/wuXPnIiIiAv3794darcZXX32FN954A926dcPgwYNRVlYGAPj5558RFBSE\nnj174qmnntKdA+Zec+fOxcKFCwEAQUFBmDVrFh577DF06NABu3fv1ru9JEm4du0axowZg06dOmHC\nhAm673333Xfo0aMHunXrhsmTJ+PWrVsA7n7IT2FhIQDg4MGDCA4O1u07PDwcffv2RUREBI4ePYrA\nwEB0794d/v7+OHXqVF3FWG0bNmxA165dsWjRIvz+++8W3z/ZBjYBsnnZ2dn44YcfkJSUhAkTJiA0\nNBSHDx9G48aNkZKSgtu3b+Pll1/Gl19+iYMHDyIqKgr/93//p3c/954ZUpIklJeXY//+/ViyZAnm\nzZund3tZlpGRkYGlS5ciMzMTZ86cQXp6Om7cuIGoqCgkJibi8OHDKCsrw+eff667X0OOHz+O7777\nDuvWrcOKFSsQExODjIwM/Pzzz1Y5IeLUqVOxbds2lJaWon///hgzZgy2b98u/OcNiIZNgGyaJEkY\nPHgwGjRogC5duuDOnTt48sknAQBdu3aFVqtFVlYWjh49ioEDB6J79+74+9//Xq3Pm3j22WcBAD16\n9IBWq1W8TWBgIFq0aAFJkhAQEIDs7GycOHECbdq0wSOPPALg7geQ/Pjjj1X+HsOHD8cDDzwAAHj8\n8cfxwQcf4KOPPoJWq8WDDz5Y3UjqlK+vL+bMmYPMzExERUUhKioKI0eOtEotZB3WX5gkqkKjRo0A\nAA4ODnB0dNRd7+DggLKyMsiyjM6dOyM9Pd2k+614Qm7QoIFuWcnQbe693f1/7cuyrLuuYcOGuHPn\nDgDgxo0blW7XpEkT3dfjx49H7969kZycjCFDhmDFihW6pSNjcnJydGfQnTp1KsrLy7Fy5UpIkoSU\nlBRERkbi4sWL6NWrF6ZMmaKbg8yfPx/79+9HSkoKJEnCL7/8orvPAwcOYM2aNdixYwfGjRuH6Ojo\nKusg+8EmQDatOksTHTp0wKVLl7Bv3z707t0bt2/fxsmTJ+Hn51ej+zNGkiR06NABWq0Wp0+fRtu2\nbbF27VoMGDAAwN2ZwMGDB/HUU0/hyy+/NLjf7OxstGnTBi+//DLOnTuHI0eOVKsJtGzZUjdMr/Di\niy/qvt6+fXul791722HDhuH999/XbX/zzTd488034e3tjSlTpmDZsmU2MbAmy+J/cbIZ967XK319\n723u3XZ0dMSmTZvwyiuv4MqVKygrK8Nrr72m2AQMrdkrXW/o06UeeOABrFmzBmPGjEFZWRkCAwMx\ndepUAMC7776LyZMnw8XFBUFBQQZ/j8TERKxduxaOjo7w9vZWnGGY20MPPYTk5ORKH91K4uGppImI\nBMbBMBGRwNgEiIgExiZARCQwNgEiIoGxCRARCYxNgIhIYGwCREQCYxMgIhLY/wPvzB87kxUFaQAA\nAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x4c39f30>"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
" Example 3.19, Page Number: 61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration:\n",
"#peak loads(MW) are:\n",
"P1 = 10\n",
"P2 = 5\n",
"P3 = 8\n",
"P4 = 7\n",
"\n",
"DF = 1.5 #Diversity factor\n",
"LF = 0.60 #Avg annual load factor\n",
"\n",
"#Calculation:\n",
"M = (P1+P2+P3+P4)/DF #Max demand on the station(MW)\n",
"E = (LF*M)*8760 #Annual energy supplied(MWh)\n",
"#the installed capacity should be 15% to 20% more than the\n",
"#maximum demand to meet the future needs.\n",
"#Taking Installed capacity to be 20% more than the maximum demand,\n",
"IC = 1.2*M #MW\n",
"\n",
"\n",
"#Results:\n",
"print \"(i) The maximum demand on the station is\",M,\"MW\"\n",
"print \"(ii) Annual energy supplied by the station is (\",E/1000,\"* 10^6) kWh\"\n",
"print \"(iii)Installed capacity is\",IC,\"MW\"\n",
"print \" Suitable unit sizes are 4, each of 6 MW capacity.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) The maximum demand on the station is 20.0 MW\n",
"(ii) Annual energy supplied by the station is ( 105.12 * 10^6) kWh\n",
"(iii)Installed capacity is 24.0 MW\n",
" Suitable unit sizes are 4, each of 6 MW capacity.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.20, Page Number: 64"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"c1 = 20 #capacity of standby station(MW)\n",
"c2 = 18 #Capacity of base load station(MW)\n",
"E1 = 7.35*10**6 #Annual standby output(kWh)\n",
"E2 = 101.35*10**6 #Annual base load station output(kWh)\n",
"P3 = 12 #peak load on standby station(MW)\n",
"t = 2190 #hours of use by standby station/year\n",
"\n",
"\n",
"#Calculation:\n",
"LF1 = E1/(t*P3*10**3) #Annual load factor of standby station\n",
"PCF1 = E1/(8760*c1*10**3) #Plant capacity factor of standby station\n",
"LF2 = E2/(8760*c2*10**3) #Annual load factor of base load station\n",
"#for base load station,\n",
"PCF2 = LF2 #Plant capacity factor of base load station\n",
"\n",
"#Results:\n",
"print \"Annual load factor of standby station is\",round(LF1*100,1),\"%\"\n",
"print \"Plant capacity factor of standby station is\",round(PCF1*100,1),\"%\"\n",
"print \"Annual load factor of base load station is\",round(LF2*100,1),\"%\"\n",
"print \"Plant capacity factor of base load station is\",round(PCF2*100,1),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Annual load factor of standby station is 28.0 %\n",
"Plant capacity factor of standby station is 4.2 %\n",
"Annual load factor of base load station is 64.3 %\n",
"Plant capacity factor of base load station is 64.3 %\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.21, Page Number: 64"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from sympy import *\n",
"\n",
"#Variable declaration:\n",
"M = 60000 #maximum load of hydro plant(kW)\n",
"m = 20000 #minimum load of hydro pland(kW)\n",
"P = 50000 #peak load of plant per day(kW)\n",
"\n",
"\n",
"#Calculation:\n",
"#Let OE = Capacity of steam plant\n",
"#EC = Capacity of hydro plant\n",
"x,y = symbols('x,y') #two variables as indicated in given curve\n",
"# As steam electric conversion is 60%,\n",
"#\u2234 Area HEFI = 0\u00b76 \u00d7 Area FGB ... (i)\n",
"#But Area HEFI = Area CFE \u2212 Area CHI\n",
"# = 1/2*(x*y-50000)\n",
"# Now Area FGB = 1/2*(FG*GB) = 1/2*(24-x)*(40000-y)\n",
"# or 0.2*x*y + 12000*x + 7.2*y \u2212 338000 = 0\n",
"#Also from similar triangles CEF and CDB, we get,\n",
"# y/40000 = x/24\n",
"y = x/24*40000\n",
"x1 = round(solve(0.2*x*y + 12000*x + 7.2*y-338000,x)[1])\n",
"y1 = x1/24*40000\n",
"\n",
"\n",
"\n",
"#Result:\n",
"print \"Capacity of the hydro plant is\",y1,\"kW\"\n",
"print \"Capacity of the steam plant is\",60000-y1,\"kW\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Capacity of the hydro plant is 20000.0 kW\n",
"Capacity of the steam plant is 40000.0 kW\n"
]
}
],
"prompt_number": 32
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.22, Page Number: 65"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from sympy import *\n",
"\n",
"#Variable declaration:\n",
"#Suppose the maximum demand of reservoir plant is y MW and it \n",
"#operates for x hours\n",
"x,y = symbols('x y')\n",
"\n",
"\n",
"#Calculation:\n",
"E = 10**3*(1/2*(320+160)*8760) #Units generated/annum\n",
"#As the steam plant, run-of-river plant and hydro plant generate \n",
"#units in the ratio of 7 : 4 : 1, so, units generated by \n",
"#each plant are:\n",
"\n",
"E1 = E*7/12 #by steam plant\n",
"E2 = E*4/12 #by run-of-river plant\n",
"E3 = E/1/12 #by reservoir plant\n",
"\n",
"#(i) Maximum demand on run-of-river plant = Area OEBA/OA\n",
"M2 = 700.8*10**6/8760 #kW\n",
"\n",
"#Now,\n",
"x = 8760*y/160\n",
"E33 = 10**3*1/2*(x*y)\n",
"#But the units generated by reservoir plant are E3 kWh\n",
"y1 = solve(E33-E3,y)[1]\n",
"M3 = y1 #maximum demand on reservoir station(MW)\n",
"M1 = 320-80-M2/1000 #Maximum demand on steam station(MW)\n",
"LF2 = 100 #load factor of river plant(%), because it acts \n",
" #as a base station.\n",
"\n",
"LF1 = E1*100/(M1*1000*8760) #load factor of of run-of-river plant(%)\n",
"LF3 = E3*100/(M3*1000*8760) #load factor of reservoir plant(%)\n",
"\n",
" \n",
"\n",
"#Result:\n",
"print \"(i)Maximum demand on run-of-river plant is\",round(M1),\"MW\"\n",
"print \" Maximum demand on steam station is\",round(M2),\"MW\"\n",
"print \" Maximum demand on reservoir station is\",round(y1),\"MW\"\n",
"print \"\\n(ii)Load factor of steam plant plant is\",LF1,\"%\"\n",
"print \" Load factor of of run-of-river plant is\",LF2,\"%\"\n",
"print \" Load factor of of reservoir plant is\",round(LF3),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i)Maximum demand on run-of-river plant is 160.0 MW\n",
" Maximum demand on steam station is 80000.0 MW\n",
" Maximum demand on reservoir station is 80.0 MW\n",
"\n",
"(ii)Load factor of steam plant plant is 87.5 %\n",
" Load factor of of run-of-river plant is 100 %\n",
" Load factor of of reservoir plant is 25.0 %\n"
]
}
],
"prompt_number": 5
}
],
"metadata": {}
}
]
}
|