1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
{
"metadata": {
"name": "",
"signature": "sha256:260bb8beffe2e4d2155fdaec0c7462f8cf5127d60c79f0bddb469ea9aad62673"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 26: Neutral Grounding"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 26.1, Page Number: 599"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variable declaration:\n",
"f = 50 #Supply frequency(Hz)\n",
"C = 4.5*10**-6 #Line to earth capacitance(F)\n",
"\n",
"\n",
"#Calculation:\n",
"XL = 1/(3*2*math.pi*f*C) #ohm\n",
"\n",
"\n",
"#Result:\n",
"print \"The reactance of Peterson coil is\",round(XL,1),\"ohm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The reactance of Peterson coil is 235.8 ohm\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 26.2, Page Number: 599"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variable declaration:\n",
"l = 200 #length of transmission line(km)\n",
"f = 50 #Supply frequency(Hz)\n",
"c = 0.02*10**-6 #Line to earth capacitance(F/km)\n",
"V = 230 #voltage rating of line(kV)\n",
"\n",
"\n",
"#Calculation:\n",
"C = c*l #capacitance of coil(F)\n",
"L = round(1/(3*(2*3.14*f)**2*C),2) #Required inductance of Peterson coil(H)\n",
"Vph = round(V*1000/1.732) #Voltage across Peterson coil(kV)\n",
"IF = math.ceil(Vph/(2*3.13*f*L)) #Current through Peterson coil(A)\n",
"kVA = Vph*IF/1000 #Rating of Peterson coil\n",
"\n",
"\n",
"\n",
"#Calculation:\n",
"print \"Inductance of Peterson coil is\",L,\"H\"\n",
"print \"Rating of Peterson coil is\",round(kVA),\"kVA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Inductance of Peterson coil is 0.85 H\n",
"Rating of Peterson coil is 66397.0 kVA\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 26.3, Page Number: 600"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variable declaration:\n",
"f = 50 #fequency of supply(Hz)\n",
"C = 1.2*10**-6 #line-to-earth capacitance(F)\n",
"\n",
"\n",
"#Calculation:\n",
"#(i) To neutralize capacitance of 100% of the length of the line,\n",
"#Inductive reactance of the coilis given by\n",
"XL1 = 1/(3*2*math.pi*f*C) #ohm\n",
"\n",
"#(ii) To neutralize capacitance of 90% of the length of the line,\n",
"#Inductive reactance of the coilis given by\n",
"XL2 = 1/(3*2*math.pi*f*0.9*C) #ohm\n",
"\n",
"\n",
"#(iii) To neutralize capacitance of 80% of the length of the line,\n",
"#Inductive reactance of the coilis given by\n",
"XL3 = 1/(3*2*math.pi*f*0.8*C) #ohm\n",
"\n",
"\n",
"#Result:\n",
"print \"(i) Inductive reactance of the coil to neutralize capacitance\"\n",
"print \" of 100% of the length of the line is\",round(XL1,2),\"ohm\"\n",
"print \"\\n(ii) Inductive reactance of the coil to neutralize capacitance\"\n",
"print \" of 100% of the length of 90% of the line is\",round(XL2,2),\"ohm\"\n",
"print \"\\n(iii)Inductive reactance of the coil to neutralize capacitance\"\n",
"print \" of 100% of the length of 80% of the line is\",round(XL3,2),\"ohm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Inductive reactance of the coil to neutralize capacitance\n",
" of 100% of the length of the line is 884.19 ohm\n",
"\n",
"(ii) Inductive reactance of the coil to neutralize capacitance\n",
" of 100% of the length of 90% of the line is 982.44 ohm\n",
"\n",
"(iii)Inductive reactance of the coil to neutralize capacitance\n",
" of 100% of the length of 80% of the line is 1105.24 ohm\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 26.4, Page Number: 600"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variable declaration:\n",
"r = 0.01 #radius of conductor(m)\n",
"d = 4 #conductor spacing(m)\n",
"V = 132 #voltage of the line(kV)\n",
"f = 50 #supply frequency(Hz)\n",
"l = 200 #line length(km)\n",
"\n",
"\n",
"#Calculation:\n",
"c = round(2*math.pi*8.885/math.log(d/r),1)*10**-12 #capacitance per unit length(F/m)\n",
"C = c*l*1000 #Capacitance between phase and earth for 200 km line(F)\n",
"L = round(1/(3*(2*math.pi*f)**2*C),2) #required inductance L of the arc suppression coil(H)\n",
"IF = V*1000/(10*math.ceil(3**0.5*2*math.pi*f*L/10)) #Current through the coil(A)\n",
"kVA = V/3**0.5*IF #kVA\n",
"\n",
"\n",
"#Result:\n",
"print \"The inductance of the coil is\",L,\"H\"\n",
"print \"Rating of the coil is\",round(kVA),\"kVA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The inductance of the coil is 1.82 H\n",
"Rating of the coil is 10060.0 kVA\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|