summaryrefslogtreecommitdiff
path: root/Principles_of_Power_System/chapter22_1.ipynb
blob: 38d23b90eba48631c29337b48885cee1a032483a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
{
 "metadata": {
  "name": "",
  "signature": "sha256:a5275b4f1bdd430cf4ed3e203b7e975d86c74b17fe608ee8e07ebac2f3a39a9f"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 22: Protection of Alternators and Transformers"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 22.1, Page Number: 529"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from sympy import *\n",
      "\n",
      "#Variable declaration:\n",
      "MVA = 10                         #MVA rating of alternator\n",
      "V = 6.6                          #voltage rating of alternator(V)\n",
      "X = 10                           #per phase reactance of lternator(%)\n",
      "Iop = 175                         #operating current(A)\n",
      "\n",
      "\n",
      "#Calculation:\n",
      "Vph = V*1000/3**0.5                   #phase voltage(kV)\n",
      "I = round(MVA*10**6/(3**0.5*V*1000))      #full load current(A)\n",
      "\n",
      "#Let the reactance per phase be x ohms.\n",
      "r,x = symbols('r x')           #r = earthing resistance required to leave 10% of\n",
      "                                #the winding unprotected\n",
      "x1 = solve(3**0.5*x*I/(6.6*1000)*100-10,x)[0]\n",
      "X1 = x1*0.1                     #Reactance of 10% winding\n",
      "E = Vph*0.1                    #E.M.F. induced in 10% winding\n",
      "Zf = (X1**2+r**2)**0.5\n",
      "Ief = E/Zf                     #Earth-fault current due to 10% winding\n",
      "\n",
      "#When this fault current becomes 175 A, the relay will trip\n",
      "r1 = solve(Ief-175,r)[1]               #A\n",
      "\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"Required value of earth resistance is\",round(r1,3),\"ohm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Required value of earth resistance is 2.177 ohm\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 22.2, Page Number: 530"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from sympy import *\n",
      "\n",
      "#Variable declaration:\n",
      "MVA = 10                         #MVA rating of alternator\n",
      "V = 6.6                          #voltage rating of alternator(V)\n",
      "CR = 1000/5                      #current ratio of CT\n",
      "Rn = 7.5                         #resistance of star-point to earth(ohm)\n",
      "Iop = 0.5                        #operating current of the relay(A)\n",
      "\n",
      "\n",
      "\n",
      "#Calculation:\n",
      "#Let x % of the winding be unprotected.\n",
      "x = symbols('x')\n",
      "Vph = V*1000/3**0.5                   #phase voltage(kV)\n",
      "If = 1000/5*Iop              #minimum fault current which will operate the relay(A)\n",
      "E = Vph*x/100                 #E.M.F. induced in x% winding(V)\n",
      "Ief = E/Rn                      #Earth fault current which x% winding will cause(A)\n",
      "#This current must be equal to 100 A.\n",
      "x1 = solve(Ief-If,x)[0]\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"Percentage of unprotected winding is\",round(x1,2),\"%\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Percentage of unprotected winding is 19.68 %\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 22.3, Page Number: 530"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from sympy import *\n",
      "\n",
      "#Variable declaration:\n",
      "MVA = 10                         #MVA rating of alternator\n",
      "V = 6.6                          #voltage rating of alternator(V)\n",
      "CR = 1000/5                      #current ratio of CT\n",
      "Rn = 6                         #resistance of star-point to earth(ohm)\n",
      "Iop = 0.75                        #operating current of the relay(A)\n",
      "\n",
      "\n",
      "#Calculation:\n",
      "#Let x % of the winding be unprotected.\n",
      "x = symbols('x')\n",
      "Vph = V*1000/3**0.5                   #phase voltage(kV)\n",
      "If = 1000/5*Iop              #minimum fault current which will operate the relay(A)\n",
      "E = Vph*x/100                 #E.M.F. induced in x% winding(V)\n",
      "Ief = E/Rn                      #Earth fault current which x% winding will cause(A)\n",
      "#This current must be equal to 100 A.\n",
      "x1 = solve(Ief-If,x)[0]\n",
      "\n",
      "\n",
      "#(ii) Let r2 = the minimum earthing resistance required to \n",
      "#provide protection for 90% of stator winding. \n",
      "#Then, 10% winding would be unprotected\n",
      "x2 = 10                                 #%\n",
      "r2 = Vph*x2/If*0.01                     #ohm\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(i) The percentage of each of the stator windings is\",round(x1,1),\"%\"\n",
      "print \"(ii)The minimum resistance to provide protection for 90% of\"\n",
      "print \"    the stator winding is\",round(r2,2),\"ohm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) The percentage of each of the stator windings is 23.6 %\n",
        "(ii)The minimum resistance to provide protection for 90% of\n",
        "    the stator winding is 2.54 ohm\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 22.4, Page Number: 531"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from sympy import *\n",
      "\n",
      "#Variable declaration:\n",
      "MVA = 10                         #MVA rating of alternator\n",
      "V = 6.6                          #voltage rating of alternator(V)\n",
      "CR = 1000/5                      #current ratio of CT\n",
      "s = 20                          #earth-fault setting(%)\n",
      "Iop = 0.75                        #operating current of the relay(A)\n",
      "\n",
      "\n",
      "#Calculation:\n",
      "#Since 85% winding is to be protected, 15% would be unprotected\n",
      "r = symbols('r')            #earthing resistance reqd. to leave 15% of winding unprotected(ohm)\n",
      "x = 15                                 #%\n",
      "Ifl = MVA*10**6/(3**0.5*V*1000)       #Full load current(A)\n",
      "IF = s*Ifl/100                    #Minimum fault current which will operate the relay\n",
      "Vu = x/100*V*1000/3**0.5             #Voltage induced in 15% of winding(kV)\n",
      "Ief = Vu/r                        #Earth fault current which 15% winding will cause(A)\n",
      "#This current must be equal to IF.\n",
      "r1 = solve(Ief-IF,r)[0]              #ohm\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The value of earthing resistor is\",round(r1,2),\"ohm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of earthing resistor is 3.27 ohm\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 22.5, Page Number: 538"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable declaration:\n",
      "r1 = 220/11000                        #voltage ratio of transformer\n",
      "r2 = 600/5                 #current ratio of protective transformer on 220V side\n",
      "\n",
      "\n",
      "#Calculation:\n",
      "#Suppose that line current on 220 V side is 600 A\n",
      "\n",
      "Ipd = 5                  #Phase current of delta connected CTs on 220V side(A)\n",
      "Ild = 3**0.5*Ipd         #Line current of delta connected CTs on 220 V side(A)\n",
      "\n",
      "#This Ild will flow through the pilot wires.\n",
      "Ips = 5*3**0.5           #Phase current of star connected CTs on 11,000 V side(A)\n",
      "\n",
      "#Now, using this relation: Primary apparent power = Secondary apparent power\n",
      "I = 3**0.5*220*600/(3**0.5*11000)           #A\n",
      "r3 = I/Ips                     #Turn-ratio of CTs on 11000 V side\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"Turn-ratio of CTs on 11000 V side is (\",round(r3,3),\": 1 )\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Turn-ratio of CTs on 11000 V side is ( 1.386 : 1 )\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 22.6, Page Number: 538"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable declaration:\n",
      "r1 = 0.4/11                        #line voltage(in kV) ratio of transformer\n",
      "r2 = 500/5                   #current ratio of protective transformer\n",
      "\n",
      "\n",
      "#Calculation:\n",
      "#Suppose the line current on 400 V side is 500 A.\n",
      "Ipd = 5                     #Phase current of delta connected CTs on 400 V side(A)\n",
      "Ild = Ipd*3**0.5            #Line current of delta connected CTs on 400 V side(A)\n",
      "#This Ild will flow through the pilot wires.\n",
      "Ips = 5*3**0.5             #Phase current of star-connected CTs on 11000 V side(A)\n",
      "\n",
      "#Primary apparent power = Secondary apparent power\n",
      "I = 3**0.5*400*500/(3**0.5*11000)             #A\n",
      "r3 = I/Ips\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \" The ratio of the protective transformers on 11kV side is\",round(r3,3),\"i.e, 10.5:5\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The ratio of the protective transformers on 11kV side is 2.099 i.e, 10.5:5\n"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}