1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
|
{
"metadata": {
"name": "",
"signature": "sha256:85e6b6fc08cf389e51cb8c88e6ef45df0ab76627422a51dd5811f81a969b3ed6"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 17: Symmetrical Fault Calculations"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.1, Page Number: 402"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"kVAa = 15000\n",
"kVAb = 20000\n",
"V = 12000\n",
"kVA_base = 35000\n",
"Xa = 30 #%reactance of alternator A(%)\n",
"Xb = 50 #%reactance of alternator B(%)\n",
"\n",
"\n",
"#Calculation:\n",
"Xa1 = kVA_base/kVAa*Xa #% Reactance of alternator A at the base kVA\n",
"Xb1 = kVA_base/kVAb*Xb #% Reactance of alternator B at the base kVA\n",
"I = kVA_base*1000/(3**0.5*V) #Line current corresponding to 35000 kVA at 12 kV\n",
"\n",
"X = Xa1*Xb1/(Xa1+Xb1) #Total % reactance from generator neutral up to fault point\n",
"Isc = I*100/X #Short-circuit current(A)\n",
"\n",
"\n",
"#Result:\n",
"print \"The short-circuit current is\",round(Isc),\"A\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The short-circuit current is 4330.0 A\n"
]
}
],
"prompt_number": 48
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.2, Page Number: 404"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"kVA = 20000 #kVA rating of alternator\n",
"V = 10000 #voltage rating of alternator\n",
"Xa = 5 # % reactance of alternator(ohm)\n",
"\n",
"#Calculation:\n",
"I = kVA*1000/(3**0.5*V) #full load current(A)\n",
"Vp = V/3**0.5 #phase voltage(A)\n",
"#As the short-circuit current is to be 8 times the full-load current,\n",
"Xr = 1/8*100\n",
"Xe = Xr-Xa #External % reactance required\n",
"X = Xe*Vp/(I*100) #per phase external reactance required(ohm)\n",
"\n",
"#Result:\n",
"print \"Per phase external reactance required is\",X,\"ohm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Per phase external reactance required is 0.375 ohm\n"
]
}
],
"prompt_number": 49
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.3, Page Number: 404"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"Vl = 10 #transmission line voltage(kV)\n",
"Rl = 1 #line resistance(ohm)\n",
"Xl = 4 #line reactance(ohm)\n",
"MVAtf = 5 #transformer rating(MVA)\n",
"Xtf = 5 #reactance of transformer(%)\n",
"MVAal = 10 #rating of alternator(MVA)\n",
"Xal = 10 #reactance of alternator(%)\n",
"\n",
"\n",
"\n",
"#Calculation:\n",
"#Let 10,000 kVA be the base kVA\n",
"kVAb = 10000 #base kVA\n",
"Xalb = kVAb/(MVAal*1000)*Xal #% reactance of alternator on base kVA\n",
"Xtfb = kVAb/(MVAtf*1000)*Xtf #% reactance of transformer on base kVA\n",
"Xl1 = kVAb*Xl/(10*Vl**2) #% reactance of transmission line\n",
"Rl1 = kVAb*Rl/(10*Vl**2) #% resistance of transmission line\n",
"\n",
"\n",
"#(i)For a fault at the end of a transmission line (point F2),\n",
"Xt = Xalb+Xtfb+Xl1 #Total % reactance\n",
"Z = (Xt**2+Rl1**2)**0.5 #% impedance from generator neutral upto fault point F2\n",
"SCkVA1 = kVAb*100/Z #Short-circuit kVA\n",
"\n",
"\n",
"#(ii)For a fault at the high voltage terminals of the transformer (point F1),\n",
"#Total % reactance from generator neutral upto fault point F1:\n",
"Xt1 = Xalb+Xtfb\n",
"SCkVA2 = kVAb*100/Xt1 #Short-circuit kVA\n",
"\n",
"\n",
"\n",
"#Result:\n",
"print \"(i) SC kVA for 1st case = \",round(SCkVA1),\"kVA\"\n",
"print \"(ii)SC kVA for 2nd case = \",round(SCkVA2),\"kVA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) SC kVA for 1st case = 16440.0 kVA\n",
"(ii)SC kVA for 2nd case = 50000.0 kVA\n"
]
}
],
"prompt_number": 50
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.4, Page Number: 405"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"kVAb = 10000 #kVA base\n",
"Xt = 5 #reactance of each transformer(%)\n",
"kVAt = 5000 #kVA rating of each transformer\n",
"kVA1 = 10000 #kVA of generator A & B each\n",
"kVA3 = 5000 #kVA of generator C\n",
"Xa = 12 #reactance of generator A & B each(%)\n",
"Xc = 18 #reactance of generator c(%)\n",
"\n",
"\n",
"\n",
"#Calculation:\n",
"#The % reactance of generators A, B and C and that of\n",
"#each transformer on the selected base kVA will be:\n",
"XA = Xa*kVAb/kVA1\n",
"XB = Xa*kVAb/kVA1\n",
"XC = Xc*kVAb/kVA3\n",
"XT = Xt*kVAb/kVAt\n",
"\n",
"#(i) When the fault occurs on the low voltage side of the\n",
"#transformer,\n",
"#Total % reactance from generator neutral upto fault point F1\n",
"XT1 = XA/2*XC/(XA/2+XC) #%\n",
"MVAf1 = kVAb*100/XT1/1000 #Fault MVA\n",
"\n",
"#(i) When the fault occurs on the high voltage side of the\n",
"#transformer\n",
"#Total % reactance from generator neutral upto fault point F2\n",
"XT2 = XT1+XT #%\n",
"MVAf2 = kVAb*100/XT2/1000 #Fault MVA\n",
"\n",
"\n",
"#Result:\n",
"print \"Maximum fault MVA which the circuit breakers on:\"\n",
"print \"(i) low voltage side is\",round(MVAf1,1),\"MVA\"\n",
"print \"(ii)high voltage side is\",round(MVAf2),\"MVA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum fault MVA which the circuit breakers on:\n",
"(i) low voltage side is 194.4 MVA\n",
"(ii)high voltage side is 66.0 MVA\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.5, Page Number: 407"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"#Variable declaration:\n",
"X1 = 10 #reactance of generator 1 & 2 each(%)\n",
"X3 = 12 #reactance of generator 3 & 4 each(%)\n",
"kVA1 = 10000 #kVA rating of generator 1 & 2 each\n",
"kVA3 = 8000 #kVA rating of generator 3 & 4 each\n",
"Xr = 10 #reactance of reactor(%)\n",
"kVAr = 5000 #kVA of reactor\n",
"\n",
"\n",
"#Calculation:\n",
"#Fig. above shows the single line diagram of the network.\n",
"kVAb = 10000 #base kVA\n",
"X1b = X1*kVAb/kVA1 #% Reactance of generator 1 or 2 on the base kVA\n",
"X3b = X3*kVAb/kVA3 #% Reactance of generator 3 or 4 on the base kVA\n",
"Xrb = Xr*kVAb/kVAr #% Reactance of bus-bar reactor on the base kVA\n",
"\n",
"#After the fault occurs,\n",
"Xt = ((X1b/2+Xrb)*X3b/2)/(X1b/2+Xrb+X3b/2)\n",
"kVAf = kVAb*100/Xt\n",
"\n",
"\n",
"#Result:\n",
"print \"Required fault MVA is\",round(kVAf/1000,2),\"MVA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Required fault MVA is 173.33 MVA\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.6, Page Number: 408"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from sympy import *\n",
"\n",
"\n",
"#Variable declaration:\n",
"kVAa = 3000 #kVA rating of generator A\n",
"kVAb = 4500 #kVA rating of generator B\n",
"Xa = 7 #% reactance of gen A\n",
"Xb = 8 #% reactance of gen A\n",
"kVAt = 7500 #kVA rating of transformer\n",
"Xt = 7.5 #% reactance of transformer\n",
"Vb = 3.3 #bus voltage(kV)\n",
"\n",
"#Calculation:\n",
"kVAbs = 7500 #base kVA(say)\n",
"XA = Xa*kVAbs/kVAa #% Reactance of generator A on the base kVA\n",
"XB = Xb*kVAbs/kVAb #% Reactance of generator B on the base kVA\n",
"XT = Xt*kVAbs/kVAt #% Reactance of transformer on the base kVA\n",
"X = symbols('X') #percentage reactance of the bus-bar reactor\n",
"Xt1 = (XA*XB/(XA+XB))*(X+XT)/((XA*XB/(XA+XB))+(X+XT))\n",
"SCkVA = kVAt*100*Xt1 #Short-circuit kVA\n",
"#But the short-circuit kVA should not exceed 150 * 10**3 kVA,\n",
"#the rupturing capacity of the breaker.\n",
"\n",
"X1 = abs(solve(SCkVA-150*1000,X)[0])\n",
"x = X1*10*Vb**2/kVAt #reactance of the reactor(ohm)\n",
"\n",
"#Result:\n",
"print \"Reactance of the reactor per phase is\",round(x,3),\"ohm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Reactance of the reactor per phase is 0.106 ohm\n"
]
}
],
"prompt_number": 53
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.7, Page Number: 409"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaratioon:\n",
"MVAbase = 100 #base MVA\n",
"MVAa = 1500 #estimated short-circuit MVA at busbar A\n",
"MVAb = 1200 #estimated short-circuit MVA at busbar B\n",
"kV = 33 #generated voltage at each station(kV)\n",
"x = 1 #transmission line reactance(ohm)\n",
"\n",
"#Calculation:\n",
"Xa = MVAbase/MVAa*100 #% Reactance of station A on the base MVA\n",
"Xb = MVAbase/MVAb*100 #% Reactance of station B on the base MVA\n",
"Xt = MVAbase*1000*x/(10*kV**2)\n",
"\n",
"#Fault on station A.\n",
"Xt1 = (Xb+Xt)*Xa/(Xa+Xb+Xt) #Total % reactance upto fault point F1\n",
"SCMVA1 = MVAbase*100/Xt1 #Short-circuit MVA\n",
"\n",
"#Fault on station B.\n",
"Xt2 = (Xa+Xt)*Xb/(Xb+Xa+Xt) #Total % reactance upto fault point F2\n",
"SCMVA2 = MVAbase*100/Xt2 #Short-circuit MVA\n",
"\n",
"\n",
"#Result:\n",
"print \"Fault on station A, the short circuit MVA is\",round(SCMVA1),\"MVA\"\n",
"print \"Fault on station B, the short circuit MVA is\",round(SCMVA2),\"MVA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Fault on station A, the short circuit MVA is 2071.0 MVA\n",
"Fault on station B, the short circuit MVA is 1831.0 MVA\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.8, Page Number: 410"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"kVAbase = 5000 #base kVA\n",
"Xr = 6 #% reactance of reactor\n",
"Xg = 12 #% reactance of each generator\n",
"kVAg = 5000 #given generator rating(kVA)\n",
"kVAr = 5000 #given reactor rating(kVA)\n",
"\n",
"\n",
"#Calculation:\n",
"#(i) With reactors:\n",
"#Suppose a 3-phase short-circuit fault occurs on section 3 of the bus-bar.\n",
"\n",
"Xt1 = round(((Xr+Xg)/2+Xr)*Xg/(((Xr+Xg)/2+Xr)+Xg),2) #% reactance from gen. neutral upto fault point F \n",
"SCkVA1 = kVAbase*100/Xt1 #Short-circuit input\n",
"\n",
"#(ii) Without reactors:\n",
"Xt2 = Xg/3 #Total % reactance upto fault point F\n",
"SCkVA2 = kVAbase*100/Xt2\n",
"\n",
"\n",
"#Result:\n",
"print \"(i) With reactors, short circuit MVA\",round(SCkVA1/1000,3),\"MVA\"\n",
"print \"(ii) With reactors, short circuit MVA\",SCkVA2/1000,\"MVA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) With reactors, short circuit MVA 74.963 MVA\n",
"(ii) With reactors, short circuit MVA 125.0 MVA\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.9, Page Number: 411"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"MVAbase = 5 #base MVA\n",
"MVAg = 10 #MVA of generator\n",
"MVAr = 10 #MVA of reactor\n",
"MVAtr = 5 #MVA of transformer\n",
"xr = 10 #% reactance of each reactor\n",
"xg = 30 #% reactance of each generator\n",
"xtr = 5 #% reactance of each transformer\n",
"\n",
"\n",
"\n",
"#Calculation:\n",
"Xg = xg*MVAbase/MVAg #%age reactance of each generator on the base MVA\n",
"Xr = xr*MVAbase/MVAr #%age reactance of each reactor on the base MVA\n",
"Xtr = xtr*MVAbase/MVAtr #%age reactance of each transformer on the base MVA\n",
"\n",
"#Total %age reactance from generator neutral upto fault point F\n",
"Xt = ((Xg+Xr)/2+Xtr)*Xg/(((Xg+Xr)/2+Xtr)+Xg)+Xr\n",
"SCMVA = MVAbase*100/Xt #short circuit MVA\n",
"\n",
"\n",
"#Result:\n",
"print \"Short circuit MVA is\",SCMVA,\"MVA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Short circuit MVA is 40.0 MVA\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.10, Page Number: 412"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from sympy import *\n",
"\n",
"#Variable declaration:\n",
"#Let N = no. of section in bus bar\n",
"#Q = kVA rating of generator\n",
"#x = reactance of reactance\n",
"#b = bus reactances.\n",
"N,Q,x,b = symbols('N Q x b')\n",
"\n",
"#Calculation:\n",
"X1 = (b+(x+b)/(N-1))*x/(b+(x+b)/(N-1)+x) # %\n",
"SCkVA = Q*100/X1 #short circuit kVA\n",
"\n",
"\n",
"#Now putting values:\n",
"Q = 50000 #kVA\n",
"x = 20 # %\n",
"b = 10 # %\n",
"\n",
"#(i) With 3 sections\n",
"N1 = 3\n",
"X1 = (b+(x+b)/(N1-1))*x/(b+(x+b)/(N1-1)+x)\n",
"SCkVA1 = Q*100/X1\n",
"\n",
"#(ii) With 9 sections\n",
"N2 = 9\n",
"X2 = (b+(x+b)/(N2-1))*x/(b+(x+b)/(N2-1)+x)\n",
"SCkVA2 = Q*100/X2\n",
"\n",
"#(ii) When N is very large\n",
"N3 = 9999999999999 #say\n",
"X3 = (b+(x+b)/(N3-1))*x/(b+(x+b)/(N3-1)+x)\n",
"SCkVA3 = Q*100/X3\n",
"\n",
"#Result:\n",
"print \"Short circuit kVA\"\n",
"print \"(i) For 3 sections is\",SCkVA1,\"kVA\"\n",
"print \"(ii) For 9 sections is\",round(SCkVA2),\"kVA\"\n",
"print \"(iii)For large N is\",round(SCkVA3),\"kVA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Short circuit kVA\n",
"(i) For 3 sections is 450000.0 kVA\n",
"(ii) For 9 sections is 613636.0 kVA\n",
"(iii)For large N is 750000.0 kVA\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.11, Page Number: 414"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from sympy import *\n",
"\n",
"#Variable declaration:\n",
"MVAbs = 50 #base MVA\n",
"MVAg = 10 #MVA of each generators\n",
"xg = 20 #% reactance\n",
"xt = 10 #reactance of transformer(%)\n",
"MVAt = 50 #MVA of transformer\n",
"kV = 33 #bus voltage\n",
"\n",
"\n",
"#Calculation:\n",
"Xg = MVAbs/MVAg*xg #% reactance of each of the generator on base MVA\n",
"Xt = MVAbs/MVAt*xt #% reactance of the transformer on base MVA\n",
"\n",
"#Suppose the required reactance of the reactor is X % on 50 MVA base.\n",
"X = symbols('X')\n",
"#The reactances of the four generators are in parallel\n",
"#& their equivalent reactance = 100/4 = 25%.\n",
"\n",
"Xtt = (Xg/4*(X+10))/(Xg/4+(X+10))\n",
"\n",
"#Now fault MVA at F is not to exceed 500 MVA.\n",
"Xreq = MVAbs*100/500 #required reactance(%)\n",
"X1 = solve(Xtt-Xreq,X)[0]\n",
"Xrt = 10*kV**2*X1/(MVAbs*10**3) #Reactance of the reactor(ohm)\n",
"\n",
"\n",
"#Result:\n",
"print \"Reactance of the reactor is\",round(Xrt,3),\"ohm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Reactance of the reactor is 1.452 ohm\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.12, Page Number: 415"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from sympy import *\n",
"\n",
"#Variable declaration:\n",
"kVAg = 5000 #kVA rating of generator\n",
"V = 6600 #voltage rating(V)\n",
"x = 6 #reactance of generator(%)\n",
"\n",
"\n",
"#Calculation:\n",
"X = symbols('X') #% reactance of the reactor\n",
"kVAbs = 5000 #base kVA\n",
"#The short-circuit kVA is not to exceed 5 \u00d7 5000 kVA.\n",
"X1 = solve(kVAbs*100/(X+x)-5*kVAg)[0]\n",
"\n",
"X11 = X1*10*(V/1000)**2/kVAg #reactance in ohm\n",
"\n",
"\n",
"#Result:\n",
"print \"The required reactance is\",round(X11,2),\"ohm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The required reactance is 1.22 ohm\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.13, Page Number: 416"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"MVAg1 = 15 #MVA rating of A & B generators\n",
"x1 = 12 #reactance of A & B(%)\n",
"MVAg3 = 8 #MVA rating of generator C\n",
"x3 = 10 #reactance of C(%)\n",
"MVAt = 5 #MVA rating of each transformer\n",
"xt = 4 #reactance of each transformer(%)\n",
"MVAr = 10 #MVA of reactor\n",
"xr = 15 #reactance of reactor(%)\n",
"\n",
"\n",
"#Calculation:\n",
"#Let 10 MVA be the base MVA.\n",
"MVAbs = 10\n",
"#The percentage reactance of various elements on the selected\n",
"#base MVA will be :\n",
"Xa = MVAbs/MVAg1*x1\n",
"Xb = MVAbs/MVAg1*x1\n",
"Xc = MVAbs/MVAg3*x3\n",
"Xt = MVAbs/MVAt*xt\n",
"\n",
"\n",
"\n",
"#After the fault occurs,\n",
"#The reactances of generators A and B are in parallel & their\n",
"#equivalent reactance is 8%/2 = 4%.\n",
"\n",
"#Total reactance upto fault point F:\n",
"XT = ((Xa*Xb)/(Xa+Xb)+Xt)*(Xc+xr)/(((Xa*Xb)/(Xa+Xb)+Xt)+(Xc+xr))\n",
"MVA = MVAbs*100/XT #Fault MVA\n",
"\n",
"#Result:\n",
"print \"Total reactance upto fault point F is\",round(MVA,2),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total reactance upto fault point F is 119.7 %\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.14, Page Number: 417"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variable declaration:\n",
"MVAa = 10 #MVA ratng of alterator\n",
"xa = 20 #reactance of alterator(%)\n",
"MVAt = 5 #MVA of tranformer\n",
"xt = 10 #reactance of transformer(%)\n",
"V1 = 6.6 #voltage on alterator side(kV)\n",
"V2 = 33 #voltage on transmission line side(kV)\n",
"xl = 50 #line reactance(ohm)\n",
"rl = 10 #line resistance(ohm)\n",
"\n",
"\n",
"\n",
"#Calculation:\n",
"MVAbs = 10 #base MVA\n",
"Xa = MVAbs/MVAa*xa #% reactance of the alternator on base MVA\n",
"Xt = MVAbs/MVAt*xt #% reactance of the transformer on base MVA\n",
"Xl = MVAbs*1000*xl/(10*V2**2) #% reactance of the transmission line\n",
"Rl = MVAbs*1000*rl/(10*V2**2) #% resistance of the transmission line\n",
"#When the symmetrical fault occurs at point F on the transmission line (50 km away), then\n",
"XT = Xa+Xt+Xl #Total % reactance upto the point of fault F\n",
"Z = math.sqrt(XT**2+Rl**2) #% impedance from generator neutral upto fault point F\n",
"SCMVA = MVAbs*100/Z #Short-circuit MVA\n",
"Isc = SCMVA*10**6/(3**0.5*V1*1000) #Short-circuit current fed to the fault by the alternator\n",
"\n",
"\n",
"#Result:\n",
"print \"Short-circuit current fed to the fault by the alternator is\",round(Isc),\"A\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Short-circuit current fed to the fault by the alternator is 1012.0 A\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.15, Page Number: 418"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"#the ratings of the machines and equipments are shown in fig above.\n",
"\n",
"MVAbs = 10\n",
"\n",
"\n",
"#Calculation:\n",
"X1 = MVAbs/10*12 #% reactance of each generator (A, B, C and D) on the base MVA\n",
"X2 = MVAbs/10*24 #% reactance of the reactor on the base MVA\n",
"X3 = MVAbs/6*3 #% reactance of the transformer on the base MVA\n",
"\n",
"#When fault occurs at point F,\n",
"XT = (30*6/(30+6))+5 #% reactance from generator neutral upto fault point F\n",
"MVAf = MVAbs*100/XT #Fault MVA\n",
"Isc = 100*10**6/(3**0.5*66000) #Short-circuit current\n",
"\n",
"\n",
"#Result:\n",
"print \"The fault current is\",round(Isc),\"A\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The fault current is 875.0 A\n"
]
}
],
"prompt_number": 62
}
],
"metadata": {}
}
]
}
|