1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
{
"metadata": {
"name": "",
"signature": "sha256:99f2463b3650514f9c88ec63c2c7f7ef832ae42348e5f3fe2b1b870ab9434349"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 15: Voltage Control"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 15.1, Page Number: 384"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from sympy import *\n",
"import math\n",
"\n",
"#Variable declaration:\n",
"Pl = 10000 #load(kW)\n",
"pf = 0.8 #power factor(lag)\n",
"Vl = 33000 #receiving end line voltage(V)\n",
"R = 5 #line resistance(ohm)\n",
"X = 10 #line reactance(ohm)\n",
"\n",
"\n",
"\n",
"#Calculation:\n",
"I2 = math.floor(Pl*1000/(3**0.5*Vl*0.8)) #load current(A)\n",
"Ip = I2*pf #A\n",
"Iq = I2*math.sin(math.acos(pf)) #A\n",
"V1 = round(Vl/3**0.5) #sending end voltage(V)\n",
"#Let Im be the current taken by the synchronous condenser.\n",
"Im = symbols('Im') #A\n",
"Im1 = solve((V1+Ip*R-X*(Im-Iq))**2+(Ip*X+(Im-Iq)*R)**2-V1**2,Im)[0]\n",
"C = 3*V1*round(Im1)/1000 #kVAR\n",
"\n",
"\n",
"#Result:\n",
"print \"Capacity of synchronous condenser is\",math.floor(C),\"kVAR\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Capacity of synchronous condenser is 13203.0 kVAR\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 15.2 Page Number: 385"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Variable declaration:\n",
"Pl = 25000 #load(kW)\n",
"pf = 0.8 #power factor(lag)\n",
"Vl = 33000 #receiving end line voltage(V)\n",
"R = 5 #line resistance(ohm)\n",
"X = 20 #line reactance(ohm)\n",
"\n",
"\n",
"\n",
"#Calculation:\n",
"I2 = round(Pl*1000/(3**0.5*Vl*pf),1) #load current(A)\n",
"Ip = I2*pf #A\n",
"Iq = I2*math.sin(math.acos(pf)) #A\n",
"V1 = Vl/3**0.5 #sending end voltage(V)\n",
"#Let Im be the current taken by the synchronous condenser.\n",
"Im = symbols('Im') #A\n",
"Im1 = solve((V1+Ip*R-X*(Im-Iq))**2+(Ip*X+(Im-Iq)*R)**2-V1**2,Im)[0]\n",
"C = 3*V1*Im1/1000 #kVAR\n",
"\n",
"\n",
"#Result:\n",
"print \"Capacity of synchronous condenser is\",round(C/1000,2),\"MVAR\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Capacity of synchronous condenser is 33.11 MVAR\n"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|