summaryrefslogtreecommitdiff
path: root/Principles_of_Physics_by_F.J.Bueche/Chapter9_1.ipynb
blob: 7a1ea09ffcaaa7f2a285894a5ced301cd65e8202 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 09: Mechanical properties of Matter"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex9.1:pg-269"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mass Mu= 0.149  Kg\n",
      "\n",
      "Side length of ice cube is= 5.46 cm\n"
     ]
    }
   ],
   "source": [
    "  import math   #Example9_1\n",
    " \n",
    "  \n",
    "#To find its mass and how large a cube of ice has the same mass\n",
    "pu=18680.0     #units in Kg/meter**3\n",
    "s=2*10**-2     #units in meters\n",
    "vu=s**3.0     #units in meter**3\n",
    "mu=pu*vu      #units in Kg\n",
    "print \"Mass Mu=\",round(mu,3),\" Kg\\n\"\n",
    "pi=920     #units in Kg/meter**3\n",
    "vi=mu/pi     #units in meter**3\n",
    "ss=vi**(1/3.0)*10**2     #units in cm\n",
    "print \"Side length of ice cube is=\",round(ss,2),\"cm\" \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex9.2:pg-269"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The radius of the wire should be r= 1.6  mm and the cross sectional area is A= 0.0 meter**2\n",
      "\n",
      "The ball stretches the wire a distance of deltaL= 3.6 mm\n"
     ]
    }
   ],
   "source": [
    "  import math   #Example9_2\n",
    " \n",
    "  \n",
    "#To calculate the cross sectional area and how far the ball will stretch the wire\n",
    "m=40.0     #units in Kg\n",
    "g=9.8     #units in meter/sec**2\n",
    "F=m*g     #units in Kg meter/sec**2\n",
    "stress=0.48*10**8     #units in Newton/meter**2\n",
    "A=F/stress     #units in meter**2\n",
    "r=math.sqrt(A/math.pi)*10.0**3     #units in mm\n",
    "print \"The radius of the wire should be r=\",round(r,1),\" mm and the cross sectional area is A=\",round(A),\"meter**2\"\n",
    "y=200.0*10**9      #units in Newton/meter**2\n",
    "strain=stress/y\n",
    "L0=15     #units in meters\n",
    "deltaL=strain*L0     #units in meters\n",
    "deltaL=deltaL*10**3      #units in mm\n",
    "print \"\\nThe ball stretches the wire a distance of deltaL=\",round(deltaL,2),\"mm\" \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex9.7:pg-273"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The flow rate is reduced by a factor of  16.0\n"
     ]
    }
   ],
   "source": [
    "  import math   #Example9_7\n",
    " \n",
    "  \n",
    "  #To find out by what factor the blood flow in an artery is reduced\n",
    "r1_r2=1/2.0    #The ratio by which the radius is altered in arterys\n",
    "R1_R2=1/r1_r2**4           #Ratio by which flow is altered\n",
    "print \"The flow rate is reduced by a factor of \",round(R1_R2)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex9.9:pg-274"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Pressure Difference at A and B is Pa-Pb= 1980.0  Pa therefore Preasure at A is High than at B\n"
     ]
    }
   ],
   "source": [
    "  import math   #Example9_9\n",
    " \n",
    "  \n",
    "  #To compare the pressures at A and at B\n",
    "p=1000      #Units in Kg/Meter**3\n",
    "va=0.2     #units in meters/sec\n",
    "vb=2     #units in meters/sec\n",
    "Pa_Pb=-0.5*p*(va**2-vb**2)      #units in Pa\n",
    "print \"Pressure Difference at A and B is Pa-Pb=\",round(Pa_Pb),\" Pa therefore Preasure at A is High than at B\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex9.10:pg-276"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The speed of the rain drop is Vc= 0.049  meters/sec\n"
     ]
    }
   ],
   "source": [
    "  import math   #Example9_10\n",
    " \n",
    "  \n",
    "  #To  find out how fast a raindrop becomes turbulent\n",
    "Nr=10     #Number of molecules\n",
    "n=1.9*10**-5     #Units in PI\n",
    "p=1.29     #Units in Kg/Meter**3\n",
    "d=3*10**-3     #Units in meters\n",
    "vc=(Nr*n)/(p*d)       #units in meters/sec\n",
    "print \"The speed of the rain drop is Vc=\",round(vc,3),\" meters/sec\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex9.11:pg-277"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The required power is= 95.0  hp\n"
     ]
    }
   ],
   "source": [
    "  import math   #Example9_11\n",
    " \n",
    "  \n",
    "  #To find out what horsepower is required\n",
    "p=1.29    #Units in Kg/Meter**3\n",
    "Cd=0.45\n",
    "af=2     #Units in Meter**2\n",
    "v=20     #Units in meters/sec\n",
    "M=1000     #units in Kg\n",
    "F=(0.5*p*Cd*af*v**2)+((M/1000)*((110+(1.1*v))))     #Units in Newtons\n",
    "Power=F*v     #Units in Watts\n",
    "Power=Power/747.3061       #units in Horse Power\n",
    "reqHPower=Power**2     #unis in Horse power\n",
    "print \"The required power is=\",round(reqHPower),\" hp\"\n",
    "  #In text book the answer is printed wrong as 80 Hp the correct answer is 95Hp\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex9.12:pg-278"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sedimentation is vt= 0.0041 cm/sec\n"
     ]
    }
   ],
   "source": [
    "  import math   #Example9_12\n",
    " \n",
    "  \n",
    "  #To find out the sedimentation rate of sphrical particles\n",
    "b=2*10**-3     #units in cm\n",
    "g=9.8      #Units in meters/sec**2\n",
    "n=1     #units in m PI\n",
    "Pp_Pt=1050     #units in Kg/Meter**3\n",
    "vt=(((2*b**2*g)/(9*n))/(2*Pp_Pt))*10**6        #units in cm/sec\n",
    "print \"Sedimentation is vt=\",round(vt,4),\"cm/sec\"\n",
    "  #in text book answer  is printed wrong as vt=4.36*10**-3 cm/sec but the correct answer is vt=4.14*10**-3 cm/sec\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}