summaryrefslogtreecommitdiff
path: root/Principles_of_Physics_by_F.J.Bueche/Chapter7_2.ipynb
blob: 7e7a5ab7614aee6092949c89c4871d020a86bd8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter07: Motion in a Circle"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex7.1:pg-208"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " 70 degrees in radians is  1.22 radians \n",
      " 70 degrees in revolutions it is  0.194  revolutions\n"
     ]
    }
   ],
   "source": [
    "  import math  #Example 7_1\n",
    " \n",
    "  \n",
    "  #To convert angles to radians and revolutions\n",
    "theta=70.0      #units in degrees\n",
    "deg=360.0     #units in degrees\n",
    "rad=theta*2*math.pi/deg      #units in radians\n",
    "rev=1     #units in revolution\n",
    "rev=theta*rev/deg       #units in revolution\n",
    "print \" 70 degrees in radians is \",round(rad,2),\"radians \\n 70 degrees in revolutions it is \",round(rev,3),\" revolutions\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex7.2:pg-209"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Average angular velocity is w= 188.0  rad/sec\n"
     ]
    }
   ],
   "source": [
    "  import math  #Example 7_2\n",
    " \n",
    "  \n",
    "#To find average angular velocity\n",
    "theta=1800.0     #units in rev\n",
    "t=60.0      #units in sec\n",
    "w=(theta/t)     #units in rev/sec\n",
    "w=w*(2*math.pi)      #units in rad/sec\n",
    "print \"Average angular velocity is w=\",round(w),\" rad/sec\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex7.3:pg-210"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Average angular acceleration is alpha= 2.0  rev/sec**2\n"
     ]
    }
   ],
   "source": [
    "  import math  #Example 7_3\n",
    " \n",
    "  \n",
    "  #To find average angular acceleration\n",
    "wf=240.0     #units in rev/sec\n",
    "w0=0      #units in rev/sec\n",
    "t=2.0     #units in minutes\n",
    "t=t*60     #units in sec\n",
    "alpha=(wf-w0)/t      #units in rev/sec**2\n",
    "print \"Average angular acceleration is alpha=\",round(alpha),\" rev/sec**2\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex7.4:pg-212"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of revolutions does it turn before rest is theta= -108.0  rev\n"
     ]
    }
   ],
   "source": [
    "  import math  #Example 7_4\n",
    " \n",
    "  \n",
    "#To find out how many revolutions does it turn before rest\n",
    "wf=0     #units in rev/sec\n",
    "w0=3      #units in rev/sec\n",
    "t=18     #units in sec\n",
    "alpha=(wf-w0)/t      #units in rev/sec**2\n",
    "theta=(w0*t)+0.5*(alpha*t**2)         #units in rev\n",
    "print \"Number of revolutions does it turn before rest is theta=\",round(theta),\" rev\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex7.5:pg-212"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Angular accelertion is a= 2.22  meters/sec**2\n",
      "\n",
      "Angular velocity is alpha= 5.56  rad/sec**2\n"
     ]
    }
   ],
   "source": [
    "  import math  #Example 7_5\n",
    " \n",
    "  \n",
    "  #To find the angular acceleration and angular velocity of one wheel\n",
    "vtf=20.0     #units in meters/sec\n",
    "r=0.4      #units in meters\n",
    "wf=vtf/r     #units in rad/sec\n",
    "vf=20.0     #units in meters/sec\n",
    "v0=0      #units in meters/sec**2\n",
    "t=9.0     #units in sec\n",
    "a=(vf-v0)/t     #units in meters/sec**2\n",
    "alpha=a/r       #units in rad/sec**2\n",
    "print \"Angular accelertion is a=\",round(a,2),\" meters/sec**2\\n\"\n",
    "print \"Angular velocity is alpha=\",round(alpha,2),\" rad/sec**2\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex7.6:pg-213"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The rotation rate is wf= 129.0  rad/sec\n"
     ]
    }
   ],
   "source": [
    "  import math  #Example 7_6\n",
    " \n",
    "  \n",
    "  #To find out the rotation rate\n",
    "at=8.6     #units in meters/sec**2\n",
    "r=0.2      #units in meters\n",
    "alpha=at/r      #units in rad/sec**2\n",
    "t=3     #units in sec\n",
    "wf=alpha*t     #units in rad/sec\n",
    "print \"The rotation rate is wf=\",round(wf),\" rad/sec\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex7.7:pg-215"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The horizontal force must the pavement exerts is F= 8533.0  Newtons\n"
     ]
    }
   ],
   "source": [
    "  import math  #Example 7_7\n",
    " \n",
    "  \n",
    "  #To calculate how large a horizontal force must the pavement exert\n",
    "m=1200.0     #units in Kg\n",
    "v=8.0     #units in meters/sec\n",
    "r=9      #units in meters\n",
    "F=(m*v**2)/r         #units in Newtons\n",
    "print \"The horizontal force must the pavement exerts is F=\",round(F),\" Newtons\"\n",
    "  #In text book the answer is printed wrong as F=8530 N but the correct answer is 8533 N\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex7.9:pg-220"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The angle where it should be banked is theta= 47.0  degrees\n"
     ]
    }
   ],
   "source": [
    "  import math  #Example 7_9\n",
    " \n",
    "  \n",
    "  #To find out the angle where it should be banked\n",
    "v=25     #units in meters/sec\n",
    "r=60     #units in meters\n",
    "g=9.8     #units in meters/sec**2\n",
    "tantheta=v**2/(r*g)        #units in radians\n",
    "theta=math.atan(tantheta)*180/math.pi\n",
    "print \"The angle where it should be banked is theta=\",round(theta),\" degrees\",\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex7.10:pg-220"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The F/W Ratio is= 1.36e-14\n"
     ]
    }
   ],
   "source": [
    "  import math  #Example 7_10\n",
    " \n",
    "  \n",
    "  #To find out the ratio of F/W\n",
    "G=6.67*10**-11     #units in Newton meter**2/Kg**2\n",
    "m1=0.0080      #units in Kgs\n",
    "m2=0.0080      #units in Kgs\n",
    "r=2     #units in Meters\n",
    "F=(G*m1*m2)/r**2      #units in Newtons\n",
    "m=m1      #units in Kgs\n",
    "g=9.8     #units in meter/sec**2\n",
    "W=m*g     #units in Newtons\n",
    "F_W=F/W\n",
    "print \"The F/W Ratio is=\",round(F_W,16)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex7.11:pg-221"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The mass of the sun is Ms= 2.01e+30 Kg\n"
     ]
    }
   ],
   "source": [
    "  import math  #Example 7_11\n",
    " \n",
    "  \n",
    "  #To find the mass of the sun\n",
    "t=3.15*10**7     #units in sec\n",
    "r=1.5*10**11     #units in meters\n",
    "v=(2*math.pi*r)/t     #units in meters/sec\n",
    "G=6.67*10**-11     #units in Newtons\n",
    "ms=(v**2*r)/G           #Units in Kg\n",
    "print \"The mass of the sun is Ms=\",round(ms,-28),\"Kg\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex7.12:pg-222"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The orbital radius is r=  42250474.0  meters\n",
      "\n",
      "The orbital speed is v= 3073.0  meters/sec\n"
     ]
    }
   ],
   "source": [
    "  import math  #Example 7_12\n",
    " \n",
    "  \n",
    "  #To findout the orbital radius and its speed\n",
    "G=6.67*10**-11     #units in Newtons\n",
    "me=5.98*10**24     #units in Kg\n",
    "t=86400.0    #units in sec\n",
    "r=((G*me*t**2)/(4*math.pi**2))**(1/3.0)\n",
    "print \"The orbital radius is r= \",round(r),\" meters\\n\"\n",
    "v=(2*math.pi*r)/t      #units in meters/sec\n",
    "print \"The orbital speed is v=\",round(v),\" meters/sec\"\n",
    "  #in textbook the answer is printed wrong as v=3070 m/sec but the correct answer is v=3073 m/sec\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}