1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 06:Linear Momentum"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex6.1:pg-189"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The average retarding force is F= -2500.0 Newtons\n"
]
}
],
"source": [
" import math #Example 6_1\n",
" \n",
" \n",
" #To calculate how large is the average force retarding its motion\n",
"m=1500 #units in Kg\n",
"vf=15.0 #units in meters/sec\n",
"v0=20 #units in meters/sec\n",
"t=3 #units in sec\n",
"f=((m*vf)-(m*v0))/t #Units in Newtons\n",
"print \"The average retarding force is F=\",round(f),\" Newtons\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex6.2:pg-190"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The average stopping force the tree exerts on the car is F=\n",
"-160000.0 Newtons\n"
]
}
],
"source": [
" import math #Example 6_2\n",
" \n",
" \n",
" #To estimate the average stopping force the tree exerts on the car\n",
"m=1200 #units in Kg\n",
"vf=0 #units in meters/sec\n",
"v0=20 #units in meters/sec\n",
"v=0.5*(vf+v0) #units in meters/sec\n",
"s=1.5 #units in meters\n",
"t=s/v #units in sec \n",
"f=((m*vf)-(m*v0))/t #Units in Newtons\n",
"print \"The average stopping force the tree exerts on the car is F=\"\n",
"print f,\"Newtons\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex6.3:pg-191"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The car is moving at vf= 8.0 Meters/sec\n",
"\n",
"The positive sign of vf Indicate the car is moving in the direction the truck was moving\n"
]
}
],
"source": [
" import math #Example 6_3\n",
" \n",
" \n",
" #To find out how fast and the direction car moving\n",
"m1=30000 #units in Kg\n",
"m2=1200 #units in Kg\n",
"v10=10 #units in meters/sec\n",
"v20=-25 #units in meters/sec\n",
"vf=((m1*v10)+(m2*v20))/(m1+m2) #unis in meters/sec\n",
"print \"The car is moving at vf=\",round(vf,2),\" Meters/sec\\n\"\n",
"print \"The positive sign of vf Indicate the car is moving in the direction the truck was moving\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex6.5:pg-193"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The velocity V2f= 0.2 meters/sec or 20.0 cm/sec\n",
"\n",
"The velocity V1f= -0.1 meters/sec or 10.0 cm/sec\n",
"\n"
]
}
],
"source": [
" import math #Example 6_5\n",
" \n",
" \n",
" #To find the velocity of each ball after collision\n",
"m1=0.04 #units in kg\n",
"m2=0.08 #units in kg\n",
"v1=0.3 #units in meters/sec\n",
"v2f=(2*m1*v1)/(m1+m2) #units in meters/sec\n",
"v2f1=v2f*100 #units in cm/sec\n",
"print \"The velocity V2f=\",round(v2f,1),\" meters/sec or \",round(v2f1),\" cm/sec\\n\"\n",
"v1f=((m1*v1)-(m2*v2f))/m1 #units in meters/sec\n",
"v1f1=-v1f*100 #units in cm/sec\n",
"print \"The velocity V1f=\",round(v1f,1),\" meters/sec or \",round(v1f1),\" cm/sec\\n\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex6.6:pg-196"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The speed of the pelet before collision is V10= 487.0 meters/sec\n"
]
}
],
"source": [
" import math #Example 6_6\n",
" \n",
" \n",
" #To calculate the speed of the pellet before collision\n",
"h=0.30 #units in meters\n",
"g=9.8 #units in meters/sec**2\n",
"v=math.sqrt(2*g*h) #units in meters/sec\n",
"m1=2 #units in Kgs\n",
"m2=0.010 #units in kgs\n",
"v10=((m1+m2)*v)/m2 #units in meters/sec\n",
"print \"The speed of the pelet before collision is V10=\",round(v10),\" meters/sec\"\n",
" #In textbook the answer is printed wrong as V10=486 meters/sec the correct answer is V10=487 meters/sec\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex6.7:pg-196"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Thrust is F= 65000000.0 Newtons\n"
]
}
],
"source": [
" import math #Example 6_7\n",
" \n",
" \n",
" #To calculate how large a forward push given to the rocket\n",
"m=1300 #units in Kgs\n",
"vf=50000 #units in meters/sec\n",
"v0=0 #units in meters/sec\n",
"F=((m*vf)-(m*v0)) #units in Newtons\n",
"print \"The Thrust is F=\",round(F),\" Newtons\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex6.8:pg-197"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Z component of velocity is Vz= 0.0 meters/sec\n",
"\n",
"The Y component of velocity is Vy= -0.6 *V0\n",
"\n",
"The X component of velocity is Vx= -1.8 *V0\n"
]
}
],
"source": [
" import math #Example 6_8\n",
" \n",
" \n",
" #To determine the velocity of the third peice\n",
"momentumbefore=0 #units in kg meter/s\n",
"m=0.33 #units in Kgs\n",
"vz=momentumbefore/m\n",
"print \"The Z component of velocity is Vz=\",round(vz),\" meters/sec\\n\"\n",
"m=0.33 #units in Kgs\n",
"v0=0.6 #units in meters/sec\n",
"vy=-(m*v0)/m #interms of v0 and meters/sec\n",
"print \"The Y component of velocity is Vy=\",round(vy,1),\"*V0\\n\"\n",
"v01=1 #units in meters/sec\n",
"v02=0.8 #units in meters/sec\n",
"vx=-((v01+v02)*m)/m #interms of v0 and units in meters/sec\n",
"print \"The X component of velocity is Vx=\",round(vx,1),\"*V0\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex6.9:pg-198"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"After the collision the second ball moves at a speed of v= 4.1 Meters/sec\n"
]
}
],
"source": [
" import math #Example 6_9\n",
" \n",
" \n",
" #To find out the velocity of second ball after collision\n",
"v1=5 #units in meters/sec\n",
"theta=50.0 #units in degrees\n",
"v2=2 #units in meters/sec\n",
"vx=v1/(v2*math.cos(theta*math.pi/180)) #units in meters/sec\n",
"vy=-(v2*math.cos(theta*math.pi/180)) #units in meters/sec\n",
"v=math.sqrt(vx**2+vy**2) #units in meters/sec\n",
"print \"After the collision the second ball moves at a speed of v=\",round(v,2),\" Meters/sec\"\n",
" #in textbook the answer is printed wrong as 4.01 meters/sec the correct answer is 4.1 meters/sec\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex6.10:pg-199"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The average speed of the nitrogen molecule in air is V= 492.0 meters/sec\n"
]
}
],
"source": [
" import math #Example 6_10\n",
" \n",
" \n",
" #To find the average speed of the nitrogen molecule in air\n",
"ap=1.01*10**5 #units in Newton/meter**2\n",
"nofmol=2.69*10**25 #Number of molecules\n",
"nitmass=4.65*10**-26 #units in Kg\n",
"v=math.sqrt((ap*3)/(nofmol*nitmass)) #units in meters/sec\n",
"print \"The average speed of the nitrogen molecule in air is V=\",round(v),\" meters/sec\"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|