summaryrefslogtreecommitdiff
path: root/Principles_of_Physics_by_F.J.Bueche/Chapter3.ipynb
blob: 731a39e5049b09bc580027652b92ca76b263b2e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
{

 "metadata": {

  "name": "",

  "signature": "sha256:0f7242c47093d1a671ed93f821c40acaeb14b795b5ea8c74623c63dfc9c85a4c"

 },

 "nbformat": 3,

 "nbformat_minor": 0,

 "worksheets": [

  {

   "cells": [

    {

     "cell_type": "heading",

     "level": 1,

     "metadata": {},

     "source": [

      "Chapter 03:Uniform Accelerated Motion"

     ]

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.1:pg-97"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 3_1\n",

      "\n",

      "\n",

      "  #To find the balls instantaneous velocity and Average Velocity\n",

      "d1=8.6     #units in meters\n",

      "t1=0.86     #units in sec\n",

      "vp=d1/t1     #units in meters/sec\n",

      "print \"The Instantaneous Velocity at P Vp=\",round(vp),\" meters/sec\\n\"\n",

      "  #The ball stops at position Q Hence vp=0 met/sec\n",

      "vq=0    #units in meters/sec\n",

      "print \"The Instantaneous Velocity at Q Vq=\",round(vq,10),\" meters/sec\\n\"\n",

      "d2=-10.2     #units in meters\n",

      "t2=1.02     #units in sec\n",

      "vn=d2/t2     #units in meters/sec\n",

      "print \"The Instantaneous Velocity at N Vn=\",round(vn),\" meters/sec\\n\"\n",

      "d3=20     #units in meters\n",

      "t3=2.0     #units in sec\n",

      "vAQ=d3/t3     #units in meters/sec\n",

      "print \"The Average Velocity between A and Q is VAQ=\",round(vAQ),\" meters/sec\\n\"\n",

      "d4=0     #units in meters\n",

      "t4=4.0     #units in sec\n",

      "vAM=d4/t4     #units in meters/sec\n",

      "print \"The Average Velocity between A and M is VAM=\",round(vAM,10),\" meters/sec\\n\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "The Instantaneous Velocity at P Vp= 10.0  meters/sec\n",

        "\n",

        "The Instantaneous Velocity at Q Vq= 0.0  meters/sec\n",

        "\n",

        "The Instantaneous Velocity at N Vn= -10.0  meters/sec\n",

        "\n",

        "The Average Velocity between A and Q is VAQ= 10.0  meters/sec\n",

        "\n",

        "The Average Velocity between A and M is VAM= 0.0  meters/sec\n",

        "\n"

       ]

      }

     ],

     "prompt_number": 4

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.2:pg-98"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 3_2\n",

      "\n",

      "\n",

      "  #To calculate the Acceleration\n",

      "v1=20.0    #units in meters/sec\n",

      "v2=15.0    #units in meters/sec\n",

      "t1=0    #units in sec\n",

      "t2=0.5    #units in sec\n",

      "c_v=v2-v1     #units in meters/sec\n",

      "c_t=t2-t1     #units in sec\n",

      "acceleration=c_v/c_t    #units in meters/sec**2\n",

      "print \"Acceleration a=\",round(acceleration,2),\" meters/sec**2\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Acceleration a= -10.0  meters/sec**2\n"

       ]

      }

     ],

     "prompt_number": 7

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.3:pg-98"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 3_3\n",

      "\n",

      "\n",

      "  #To find acceleration and the distance it travels in time\n",

      "vf=5.0    #units in meters/sec\n",

      "v0=0   #units in meters/sec\n",

      "t=10.0    #units in sec\n",

      "a=(vf-v0)/t     #units in meters/sec**2\n",

      "v_1=(vf+v0)/2     #unis in meters/sec\n",

      "x=v_1*t    #units in meters\n",

      "print \"Acceleration is a=\",round(a,1),\" meters/sec\\n\"\n",

      "print \"Distance travelled is x=\",round(x),\" meters\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Acceleration is a= 0.5  meters/sec\n",

        "\n",

        "Distance travelled is x= 25.0  meters\n"

       ]

      }

     ],

     "prompt_number": 8

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.4:pg-99"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 3_4\n",

      "\n",

      "\n",

      "  #To find acceleration and time taken to stop\n",

      "v0=5.0    #units in meters/sec\n",

      "vf=0     #units in meters/sec\n",

      "v_1=(v0+vf)/2    #units in meters/sec\n",

      "x=20.0     #units in meters\n",

      "t=x/v_1     #units in sec\n",

      "a=(vf-v0)/t    #units in meters/sec**2\n",

      "print \"Acceleration is a=\",round(a,3),\" meters/sec**2\\n\"\n",

      "print \"Time taken to stop t=\",round(t),\" sec\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Acceleration is a= -0.625  meters/sec**2\n",

        "\n",

        "Time taken to stop t= 8.0  sec\n"

       ]

      }

     ],

     "prompt_number": 9

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.5:pg-100"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 3_5\n",

      "\n",

      "import math\n",

      "  \n",

      "  #To calculate the speed and time to cover\n",

      "a=4.0    #units in meters/sec**2\n",

      "x=20.0     #units in meters\n",

      "vf=math.sqrt(a*x*2)    #units in meters/sec\n",

      "t=vf/a    #units in sec\n",

      "print \"Speed vf=\",round(vf,2),\" meters/sec\\n\"\n",

      "print \"Time taken T=\",round(t,2),\" sec\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Speed vf= 12.65  meters/sec\n",

        "\n",

        "Time taken T= 3.16  sec\n"

       ]

      }

     ],

     "prompt_number": 10

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.6:pg-112"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 3_6\n",

      " \n",

      "import math  \n",

      "  #To find the time taken by a car to travel\n",

      "x=98.0    #uniys in meters\n",

      "a=4.0     #units in meters/sec**2\n",

      "t=math.sqrt((2*x)/a)    #units in sec\n",

      "print \"Time taken by a car to travel is T=\",round(t),\" sec\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Time taken by a car to travel is T= 7.0  sec\n"

       ]

      }

     ],

     "prompt_number": 11

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.7:pg-112"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 3_7\n",

      " \n",

      "import math  \n",

      "  #To calculate the time taken to travel\n",

      "v0=16.7    #units in meters/sec\n",

      "a=1.5    #units in meters/sec**2\n",

      "x=70    #units in meters\n",

      "t=-((-v0)+math.sqrt(v0**2-(4*(a/2)*x)))/(2*(a/2))    #units in sec\n",

      "print \"Time taken to travel T=\",round(t,1),\" sec\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Time taken to travel T= 5.6  sec\n"

       ]

      }

     ],

     "prompt_number": 12

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.8:pg-114"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 3_8\n",

      " \n",

      "  \n",

      "  #To calculate the acceleration\n",

      "vf=30.0    #units in meters/sec\n",

      "v0=0    #units in meters/sec\n",

      "t=9.0    #units in sec\n",

      "a=(vf-v0)/t    #units in meters/sec**2\n",

      "a=a*(1/1000.0)*(3600.0/1)*(3600.0/1)    #units in km/h**2\n",

      "print \"Acceleration a=\",round(a),\" km/h**2\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Acceleration a= 43200.0  km/h**2\n"

       ]

      }

     ],

     "prompt_number": 13

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.9:pg-114"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 3_9\n",

      " \n",

      "  \n",

      "  #To find how above the water is the bridge\n",

      "v0=0    #units in meters/sec\n",

      "t=3.0    #units in sec\n",

      "a=-9.8     #units in meters/sec**2\n",

      "y=(v0*t)+(0.5*a*t**2)    #units in meters\n",

      "print \"The bridge is y=\",round(y),\" meters above the water\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "The bridge is y= -44.0  meters above the water\n"

       ]

      }

     ],

     "prompt_number": 14

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.10:pg-115"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 3_10\n",

      " \n",

      "import math  \n",

      "  #To find out how high does it goes and its speed and how long will it be in air \n",

      "vf=0    #units in meters/sec\n",

      "v0=15    #units in meters/sec\n",

      "a=-9.8    #units in meters/sec**2\n",

      "y=(vf**2-v0**2)/(2*a)     #units in meters\n",

      "print \"Distance it travels is y=\",round(y,1),\" meters\\n\"\n",

      "vf=-math.sqrt(2*a*-y)    #units in meters/sec\n",

      "print \"The speed is vf=\",round(vf),\" meters/sec\\n\"\n",

      "t=vf/(0.5*a)    #units in sec\n",

      "print \"Time taken is T=\",round(t,2),\" sec\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Distance it travels is y= 11.5  meters\n",

        "\n",

        "The speed is vf= -15.0  meters/sec\n",

        "\n",

        "Time taken is T= 3.06  sec\n"

       ]

      }

     ],

     "prompt_number": 15

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.11:pg-116"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 3_11\n",

      " \n",

      "  \n",

      "  #To find out how fast a ball must be thrown\n",

      "a=9.8    #unita in meters/sec**2\n",

      "t=3    #units in sec\n",

      "v=(0.5*a*t**2)/t\n",

      "print \"The speed by which the ball has to be thrown is v=\",round(v,1),\" meters/sec\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "The speed by which the ball has to be thrown is v= 14.7  meters/sec\n"

       ]

      }

     ],

     "prompt_number": 16

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.12:pg-117"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 3_12\n",

      " \n",

      "import math  \n",

      "#To find out where the ball will hit the ground\n",

      "#Horizontal\n",

      "y=2    #units in meters\n",

      "a=9.8    #units in meters/sec**2\n",

      "t=math.sqrt(y/(0.5*a))    #units in sec\n",

      "v=15    #units in meters/sec\n",

      "x=v*t    #units in sec\n",

      "print \"The ball hits the ground at x=\",round(x,2),\" meters\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "The ball hits the ground at x= 9.58  meters\n"

       ]

      }

     ],

     "prompt_number": 17

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.13:pg-118"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "  #Example 3_13\n",

      " \n",

      "import math  \n",

      "  #To find out at what height above ground does it hit wall and is it still going up befor it hits or down\n",

      "v_1=24.0    #units in meters/sec\n",

      "x=15.0     #units in meters\n",

      "t=x/v_1     #units in sec\n",

      "v0=18    #units in meters/sec\n",

      "a=-9.8    #units in meters/sec**2\n",

      "y=(v0*t)+(0.5*a*t**2)    #units in meters\n",

      "print \"The arrow hits y=\",round(y,1),\" meters above the straight point\\n\"\n",

      "v=v0+(a*t)     #units in meters/sec\n",

      "print \"The Vertical componet of velocity is v=\",round(v,1),\" meters/sec\\n\"\n",

      "print \"As V is Positive the arrow is in its way up\\n\"\n",

      "vtotal=math.sqrt(v**2+v_1**2)     #units in meters/sec\n",

      "print \"The magnitude of velocity is vtotal=\",round(vtotal,1),\" meters/sec\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "The arrow hits y= 9.3  meters above the straight point\n",

        "\n",

        "The Vertical componet of velocity is v= 11.9  meters/sec\n",

        "\n",

        "As V is Positive the arrow is in its way up\n",

        "\n",

        "The magnitude of velocity is vtotal= 26.8  meters/sec\n"

       ]

      }

     ],

     "prompt_number": 19

    }

   ],

   "metadata": {}

  }

 ]

}