summaryrefslogtreecommitdiff
path: root/Principles_of_Physics_by_F.J.Bueche/Chapter25.ipynb
blob: 31ea6b766def12f2dbb47fd834f2fb51dc3cff9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 25:Three Revolutionary Concepts"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex25.1:pg-1164"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The particle lves by a time of=\n",
      "8.33e-08 Sec\n"
     ]
    }
   ],
   "source": [
    "  #Example 25_1\n",
    "import math  \n",
    "  #To find out how long does a particle lives when shooted\n",
    "l=2.6*10**-8          #units in sec\n",
    "t=0.95           #units in c\n",
    "life=l/math.sqrt(1-t**2)        #units in sec\n",
    "print \"The particle lves by a time of=\"\n",
    "print round(life,10),\"Sec\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex25.2:pg-1164"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The original time that is required to complete a round trip is= 0.4  Years or  5.0  Months\n"
     ]
    }
   ],
   "source": [
    "  #Example 25_2\n",
    "import math \n",
    "  \n",
    "#How log it would take according to earth clockfor a space ship to make a round trip\n",
    "fac=0.9990            #Units in c\n",
    "relfactor=math.sqrt(1-fac**2)        #units in constant\n",
    "time1=4.5       #Units in Years\n",
    "time=2*time1     #Units in Years\n",
    "oritime=relfactor*time       #Units in years\n",
    "print \"The original time that is required to complete a round trip is=\",round(oritime,1),\" Years or \",round(12*oritime),\" Months\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex25.3:pg-1164"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "In every day life our clocks never come any where close to such high speeds. The electrons in a beam such as that in television tube are easily accelerated to relativistic speeds\n"
     ]
    }
   ],
   "source": [
    "  #Example 25_3\n",
    " \n",
    "  \n",
    "  #To graph the relativistic factor and explain why we do not observe relativistic time delaton n everyfay phenomena\n",
    "print \"In every day life our clocks never come any where close to such high speeds. The electrons in a beam such as that in television tube are easily accelerated to relativistic speeds\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex25.4:pg-1165"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "She notices there is no change in stick. The length contraction effect concerns objects moving at high speed relative to observer. The meter stick is at rest relative to observer.\n"
     ]
    }
   ],
   "source": [
    "  #Example 25_4\n",
    " \n",
    "  \n",
    "  #To find out what does the women notice about the length of the stick as she starts rotating\n",
    "print \"She notices there is no change in stick. The length contraction effect concerns objects moving at high speed relative to observer. The meter stick is at rest relative to observer.\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex25.5:pg-1166"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The energy that is obtained by changing all mass to energy is E=\n",
      "9e+15\n",
      "J\n"
     ]
    }
   ],
   "source": [
    "  #Example 25_5\n",
    " \n",
    "  \n",
    "  #To compare the energy that obtained by changing all mass to energy\n",
    "m=0.1         #units in Kg\n",
    "c=3*10**8        #Units in meters/sec\n",
    "e=m*c**2          #units in J    \n",
    "print \"The energy that is obtained by changing all mass to energy is E=\"\n",
    "print e\n",
    "print \"J\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex25.6:pg-1167"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The apparent mass of High speed electron is mo=\n",
      "1.01823376491e-30\n",
      "Kg\n"
     ]
    }
   ],
   "source": [
    "  #Example 25_6\n",
    "import math  \n",
    "#To find the apparent mass of a high speed electron\n",
    "rati=1/3.0    #units in constant\n",
    "mo=9.6*10**-31        #units in Kg\n",
    "m=mo/(math.sqrt(1-rati**2))     #Units in Kg\n",
    "print \"The apparent mass of High speed electron is mo=\"\n",
    "print m\n",
    "print \"Kg\"\n",
    "  #In textbook answer printed wrong as m=9.*10**-31 Kg the correct answer is m=1.018*10**-30  \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex25.7:pg-1168"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The energy of photon is E= 1.0  eV\n"
     ]
    }
   ],
   "source": [
    "  #Example 25_7\n",
    " \n",
    "  \n",
    "#To find the energy of the photon in a beam\n",
    "h=6.626*10**-34       #units in J\n",
    "c=3*10.0**8      #units in meters/sec\n",
    "lamda=1240*10**-9      #units in meters\n",
    "e=(h*c)/lamda       #units in J\n",
    "e=e/(1.6*10**-19)         #Units in eV\n",
    "print \"The energy of photon is E=\",round(e),\" eV\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex25.8:pg-1168"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The energy with radio waves is E1=\n",
      "1.24e-08\n",
      "eV\n",
      "\n",
      "The energy with green light is E2=\n",
      "2.25454545455\n",
      "eV\n",
      "\n",
      "The energy with photon is E3=\n",
      "6200.0\n",
      "eV\n",
      "\n"
     ]
    }
   ],
   "source": [
    "  #Example 25_8\n",
    " \n",
    "  \n",
    "  #To find the energy of photonn each case\n",
    "dist1=1240.0*10**-9        #units in meters\n",
    "lamda1=100.0        #units in meters\n",
    "e1=dist1/lamda1       #Units in eV\n",
    "dist2=1240.0        #units in nano meters\n",
    "lamda2=550.0        #units in meters\n",
    "e2=dist2/lamda2       #Units in eV\n",
    "dist3=1240.0        #units in nano meters\n",
    "lamda3=0.2        #units in meters\n",
    "e3=dist3/lamda3       #Units in eV\n",
    "print \"The energy with radio waves is E1=\"\n",
    "print e1\n",
    "print \"eV\\n\"\n",
    "print \"The energy with green light is E2=\"\n",
    "print e2\n",
    "print \"eV\\n\"\n",
    "print \"The energy with photon is E3=\"\n",
    "print e3\n",
    "print \"eV\\n\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex25.9:pg-1165"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The value of work function for material is Phi= 1.89  eV\n"
     ]
    }
   ],
   "source": [
    "  #Example 25_9\n",
    " \n",
    "  \n",
    "#To find the value of work function for material\n",
    "h=6.63*10**-34       #units in J\n",
    "c=3*10.0**8      #units in meters/sec\n",
    "lamda=5*10.0**-7           #units in meters\n",
    "vo=0.6            #units in V\n",
    "e=1.6*10**-19        #units in eV\n",
    "phi=((h*c)/lamda)-(vo*e)            #Units in J\n",
    "\n",
    "phi=phi/(1.6*10**-19)     #units in eV\n",
    "\n",
    "print \"The value of work function for material is Phi=\",round(phi,2),\" eV\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex25.10:pg-1167"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The be-broglies wavelength is lamda=\n",
      "1.45714285714e-11\n",
      "Meters\n"
     ]
    }
   ],
   "source": [
    "  #Example 25_10\n",
    " \n",
    "  \n",
    "#To calculate the be-broglies wavelength\n",
    "h=6.63*10**-34       #units in J\n",
    "c=5*10**7        #units in meters/sec\n",
    "m=9.1*10**-31    #Units in Kg\n",
    "lamda=h/(m*c)         #units in meters\n",
    "print \"The be-broglies wavelength is lamda=\"\n",
    "print lamda\n",
    "print \"Meters\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex25.11:pg-1167"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The diffraction pattern that would be obtained by shooting bullet is math.sin(theta)=\n",
      "1.6575e-29\n",
      "Radians\n",
      " The diffraction angles are so small that the particles will travel essentially straight through the slit\n"
     ]
    }
   ],
   "source": [
    "  #Example 25_11\n",
    " \n",
    "  \n",
    "  #To describe the diffraction pattern that would be obtained by shooting bullet\n",
    "h=6.63*10**-34       #units in J\n",
    "m=10**-4        #Units in Kg\n",
    "c=200       #units in meters/sec\n",
    "p=m*c      #units in Kg meter/sec\n",
    "lamda=h/p              #units in meters\n",
    "width=0.2*10**-2       #units in meters\n",
    "sintheta=lamda/width        #units in radians\n",
    "print \"The diffraction pattern that would be obtained by shooting bullet is math.sin(theta)=\"\n",
    "print sintheta\n",
    "print \"Radians\\n The diffraction angles are so small that the particles will travel essentially straight through the slit\"\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}