1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 19:Electromagnetic Induction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.1:pg-938"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The flux in the room is Phi= 0.00012 T meters**2\n"
]
}
],
"source": [
" import math #Example19_1\n",
" \n",
" \n",
" #To find the flux in the room\n",
"l=4 #Units in meters\n",
"b=0.8 #Units in meters\n",
"theta=20 #Units in degrees\n",
"a=l*b #Units in meters**2\n",
"b=4*10**-5 #Units in T\n",
"thetaa=math.cos(theta*math.pi/180) #Units in radians\n",
"phi=b*thetaa*a #Units in T meters**2\n",
"print \"The flux in the room is Phi=\",round(phi,5),\" T meters**2\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.2:pg-939"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The average emf Induced is emf= 1.0 V\n"
]
}
],
"source": [
" import math #Example19_2\n",
" \n",
" \n",
" #To find how large is the average EMF induced\n",
"b=0.5 #Units in T\n",
"a=4*10**-4 #Units in meters**2\n",
"phi2=b*a #Units in Wb\n",
"phi1=0 #Units in Wb\n",
"deltaPHI=phi2-phi1 #Units in Wb\n",
"n=100.0 #Units in Constant\n",
"deltaT=2.0*10**-2 #Units in sec\n",
"emf=(n*deltaPHI)/deltaT #Units in V\n",
"print \"The average emf Induced is emf=\",round(emf),\" V\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.3:pg-939"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The emf generated is emf= 50.0 V\n"
]
}
],
"source": [
" import math #Example19_3\n",
" \n",
" \n",
" #To findout how large an emf is generated\n",
"m=0.5 #Units in H\n",
"i=1 #Units in A\n",
"t=0.01 #Units in sec\n",
"emf=m*(i/t) #Units in V\n",
"print \"The emf generated is emf=\",round(emf),\" V\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.5:pg-939"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The time constant is L/R= 0.0833 Sec\n",
" The energy stored is= 1.0 J\n"
]
}
],
"source": [
" import math #Example19_5\n",
" \n",
" \n",
" #To find the time constant of the circuit and the final energy stored\n",
"l=0.5 #Units in H\n",
"r1=2 #Units in Ohms\n",
"r2=4 #Units in Ohms\n",
"r=r1+r2 #Units in Ohms\n",
"l_r=l/r #Units in sec\n",
"i=2 #Units in A\n",
"ene=0.5*l*i**2\n",
"print \"The time constant is L/R=\",round(l_r,4),\" Sec\\n The energy stored is=\",round(ene),\" J\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.6:pg-940"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The emf induced in the rod is emf= 0.000542 V\n"
]
}
],
"source": [
" import math #Example19_6\n",
"#To find the emf induced in the rod\n",
"b=0.6*10**-4 #Units in T\n",
"v=3 #Units in meters/sec\n",
"d=5 #Units in meters\n",
"theta=53 #Units in degrees\n",
"thetaa=math.cos(theta*math.pi/180) #Units in radians\n",
"emf=b*v*d*thetaa #Units in V\n",
"print \"The emf induced in the rod is emf=\",round(emf,6),\" V\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.7:pg-940"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The back emf developed is EMF= 104.0 V\n"
]
}
],
"source": [
" import math #Example19_7\n",
" \n",
" \n",
"#To calculate the Back emf developed\n",
"i=3 #Units in A\n",
"r=2.0 #Units in Ohms\n",
"v=110.0 #Units in Ohms\n",
"e=v-(i*r) #Units in V\n",
"print \"The back emf developed is EMF=\",round(e),\" V\"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|