1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 13:Vibrations and Waves"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex13.1:pg-508## "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum velocity is Vmax= 1.4 Meter/sec\n",
"\n",
"Maximum acceleration is Amax= 4.9 meter/sec**2\n",
"\n",
"Velocity at x=0.1 meters is= 1.36 meters/sec\n",
"\n",
"Acceleration at x=0.1 meters is= -1.23 meters/sec**2\n",
"\n"
]
}
],
"source": [
" import math #Example 13_1\n",
" \n",
" #To find the maximum velocity and acceleration and the same when x=10cm\n",
"xo=0.4 #Units in Meters\n",
"k=24.5 #Units in N/M\n",
"m=2 #Units in Kg\n",
"vmax=xo*(math.sqrt(k/m)) #Units in meters/sec\n",
"print \"Maximum velocity is Vmax=\",round(vmax,1),\" Meter/sec\\n\"\n",
"amax=(k*xo)/m #Units in meter/sec**2\n",
"print \"Maximum acceleration is Amax=\",round(amax,1),\" meter/sec**2\\n\"\n",
"x=0.1 #Units in meters\n",
"v=math.sqrt((k/m)*(xo**2-x**2)) #Units in meters/Sec\n",
"print \"Velocity at x=0.1 meters is= \",round(v,2),\" meters/sec\\n\"\n",
"a=-(k*x)/m #Units in meter/sec**2\n",
"print \"Acceleration at x=0.1 meters is= \",round(a,2),\" meters/sec**2\\n\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex13.2:pg-512## "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The frequency of vibrations is f= 0.56 Hz\n"
]
}
],
"source": [
" import math #Example 13_2\n",
" \n",
" \n",
" #To find the frequency of the vibrations\n",
"spring=24.5 #Units in N/m\n",
"m=2 #Units in Kg\n",
"f=(1/(2*math.pi))*math.sqrt(spring/m) #Units in Hz\n",
"print \"The frequency of vibrations is f=\",round(f,2),\" Hz\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex13.3:pg-513"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tension required in the string is T= 300.0 N\n"
]
}
],
"source": [
" import math #Example 13_3\n",
" \n",
" \n",
" #To find the tension required in string\n",
"m=0.002 #Units in Kg\n",
"l=0.6 #Units in meters\n",
"v=300 #Units in meters/sec\n",
"T=(m/l)*v**2 #Units in N\n",
"print \"Tension required in the string is T=\",round(T),\" N\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex13.4:pg-514"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The first resonance frequency is F1= 2.0 Hz\n",
"\n",
"The second resonance frequency is F2= 4.0 Hz\n",
"\n",
"The third resonance frequency is F3= 6.0 Hz\n",
"\n"
]
}
],
"source": [
" import math #Example 13_4\n",
" \n",
" \n",
" #To draw a picture on the first three resonance frequencies\n",
"l=6 #Units in meters\n",
"n=1\n",
"lamda1=(2*l)/n #Units in meters\n",
"n=2\n",
"lamda2=(2*l)/n #Units in meters\n",
"n=3\n",
"lamda3=(2*l)/n #Units in meters\n",
"speed=24 #Units in meters/sec\n",
"f1=speed/lamda1 #Units in Hz\n",
"f2=speed/lamda2 #Units in Hz\n",
"f3=speed/lamda3 #Units in Hz\n",
"print \"The first resonance frequency is F1=\",round(f1),\" Hz\\n\"\n",
"print \"The second resonance frequency is F2=\",round(f2),\" Hz\\n\"\n",
"print \"The third resonance frequency is F3=\",round(f3),\" Hz\\n\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex13.5:pg-515 "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The speed of the wave is v= 40.0 meters/sec\n"
]
}
],
"source": [
" import math #Example 13_5\n",
" \n",
" \n",
" #To find the speed of the wave\n",
"l=300*10**-2 #Units in Meters\n",
"lamda3=(l*2)/3 #Units in meters\n",
"f=20 #Units in sec**-1 or Hz\n",
"v=f*lamda3 #Units in meters/sec\n",
"print \"The speed of the wave is v=\",round(v),\" meters/sec\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex13.6:pg-516"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The youngs modulus is Y=\n",
"1.961e+11 N/meters**2\n"
]
}
],
"source": [
" import math #Example 13_6\n",
" \n",
" \n",
" #To find the youngs modulus\n",
"lamda=1.85 #Units in meters\n",
"f=2700 #units in sec**-1\n",
"v=lamda*f #Units in meters/sec\n",
"density=7.86*10**3 #Units in Kg/meter**3\n",
"y=v**2*density #Units in N/meters**2\n",
"print \"The youngs modulus is Y=\"\n",
"print round(y,-8),\"N/meters**2\"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|