1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 11:Thermal Properties of Matter"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex11.1:pg-303"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The heat required for 400 gm of water is Q= 2000.0 Cal\n",
"\n",
"The heat required for 400 gm of copper is Q= -186.0 Cal\n",
"\n"
]
}
],
"source": [
" #Example 11_1\n",
" \n",
" \n",
" #To find out how much heat is required to change the temperature\n",
" #With 400 Grams of water\n",
"c=1 #units in cal/g Centigrade\n",
"m=400 #Units in gm\n",
"t=5 #Units in centigrade\n",
"q=c*m*t #Units in Cal\n",
"print \"The heat required for 400 gm of water is Q=\",round(q),\" Cal\\n\"\n",
" #With 400 grams of copper\n",
"c=0.093 #units in cal/g Centigrade\n",
"m=400 #Units in gm\n",
"t=-5 #Units in centigrade\n",
"q=c*m*t #Units in Cal\n",
"print \"The heat required for 400 gm of copper is Q=\",round(q),\" Cal\\n\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex11.2:pg-303"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"When it crystallizes heat required is Q= 4000.0 Cal\n",
"\n",
"When it condenses heat required is Q= 26950.0 Cal\n",
"\n"
]
}
],
"source": [
" #Example 11_2\n",
" \n",
" \n",
" #To findout how much water is released\n",
" #When it crystallizes\n",
"m=50 #Units in gm\n",
"h=80 #Units in Cal/gm\n",
"q=m*h #Units in Cal\n",
"print \"When it crystallizes heat required is Q=\",round(q),\" Cal\\n\"\n",
" #When it Condenses\n",
"m=50 #Units in gm\n",
"h=539 #Units in Cal/gm\n",
"q=m*h #Units in Cal\n",
"print \"When it condenses heat required is Q=\",round(q),\" Cal\\n\"\n",
" #In textbook answer is printed wrong as Q=27000 cal but the correct answer is Q=26950 Cal\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex11.3:pg-304"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The amount of ice that has to be added is M= 54.0 gm\n"
]
}
],
"source": [
" #Example 11_3\n",
" \n",
" \n",
" #To findout the amount of Ice that has to be added\n",
"m=200 #Units in gm\n",
"c=1 #Units in Cal/gm Centigrade\n",
"tf=60 #Units in Centigrade\n",
"to=98 #Units in Centigrade\n",
"change=m*c*(tf-to) #units in Cal\n",
"tf=60 #Units in centigrade\n",
"to=0 #Units in centigrade\n",
"Hf=80 #Units in Cal/gm\n",
"change1=Hf+c*(tf-to) #Units in Cal/gm\n",
"M=change/-(change1)\n",
"print \"The amount of ice that has to be added is M=\",round(M,1),\" gm\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex11.4:pg-305"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The specific heat of metal is Cm= 0.216 cal/gm C\n"
]
}
],
"source": [
" #Example 11_4\n",
" \n",
" \n",
" #To findout the specific heat capacity of the metal\n",
"m=400 #Units in gm\n",
"c=0.65 #Units in Cal/gm Centigrade\n",
"tf=23.1 #Units in Centigrade\n",
"to=18 #Units in Centigrade\n",
"oil=m*c*(tf-to) #units in cal\n",
"m1=80 #Units in gm\n",
"tf=23.1 #Units in Centigrade\n",
"to=100 #Units in Centigrade\n",
"cm=m1*(tf-to) #units in in terms of cm and gm Centigrade\n",
"cmm=oil/-cm #Units in Cal/gm Centigrade\n",
"print \"The specific heat of metal is Cm=\",round(cmm,3),\" cal/gm C\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex11.5:pg-305"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The time taken is t= 449.0 sec\n"
]
}
],
"source": [
" #Example 11_5\n",
" \n",
" \n",
" #To findout how long does the heater takes to heat\n",
"m=500 #Units in gm\n",
"c=0.033 #Units in Cal/gm Centigrade\n",
"tf=357 #Units in Centigrade\n",
"to=20.0 #Units in Centigrade\n",
"m1=30 #Units in gm\n",
"hv=65 #Units in cal/gm\n",
"Hg=((m*c*(tf-to))+(m1*hv))*4.1808135 #units in Joules\n",
"delivered=70 #Units in Joule/Sec\n",
"t=Hg/delivered #Units in sec\n",
"print \"The time taken is t=\",round(t),\" sec\"\n",
" #In textbook answer printed wrong as t=450 sec correct answer is t=448 sec\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex11.6:pg-306"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the rise in temperature is DeltaT= 38.6 C\n"
]
}
],
"source": [
" #Example 11_6\n",
" \n",
" \n",
" #To findout the rise in temperature\n",
"m=0.01 #Units in Kg\n",
"v=100 #Units in meters/sec\n",
"KE=(0.5*m*v**2)/4.1808135 #units in Cal\n",
"m=10 #units in gm\n",
"c=0.031 #units in cal/gm Centigrade\n",
"t=KE/(m*c)\n",
"print \"the rise in temperature is DeltaT=\",round(t,1),\" C\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex11.8:pg-307"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The slab is longer by= 0.01 meters\n"
]
}
],
"source": [
" #Example 11_8\n",
" \n",
" \n",
" #To findout how much longer is at 35 degrees\n",
"alpha=10*10**-6 #Units in Centigrade\n",
"dist=20.0 #Unis in meters\n",
"t=50 #Units in centigrade\n",
"L=alpha*dist*t #Units in meters\n",
"print \"The slab is longer by=\",round(L,3),\" meters\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex11.9:pg-308"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The new diameter of the hole is= 2.0076 cm\n"
]
}
],
"source": [
" #Example 11_9\n",
" \n",
" \n",
" #To findout how large a diameter when the sheet is heated\n",
"dist=2 #Units in cm\n",
"delta=19*10**-6 #Units in Centigrade**-1\n",
"t=200 #Units in centigrade\n",
"L=dist*delta*t #Units in cm\n",
"print \"The new diameter of the hole is=\",round(2+L,4),\" cm\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex11.10:pg-309"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The change in benzene volume is V30= 101.253 cm**3\n"
]
}
],
"source": [
" #Example 11_10\n",
" \n",
" \n",
" #To findout the change in benzene volume\n",
"delta=1.24*10**-3 #Units in Centigrade**-1\n",
"t=10 #Units in Centigrade\n",
"v10=100.0 #Units in cm**3 \n",
"v20=delta*t+v10 #Units in cm**3\n",
"V=v20*delta*t #Units in cm**3\n",
"v30=V+v20 #Units in cm**3\n",
"print \"The change in benzene volume is V30=\",round(v30,3),\" cm**3\"\n",
" #In textbook the answer is printed wrng as V3=0102.5 cm**3 the correct answer is V3=101.253 cm**3 \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex11.11:pg-309"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The ice melts by 116.0 gm\n"
]
}
],
"source": [
" #Example 11_11\n",
" \n",
" \n",
" #To findout how much ice melts each hour\n",
"s=30 #Units in cm\n",
"a=s*s*10**-4 #units in meter**2\n",
"k=0.032 #Units in W/K meter\n",
"t=25 #Units in K\n",
"l=0.040 #Units in meters\n",
"q_t=(6*k*((a*t)/l))/4.1808135 #Units in cal/sec\n",
"Q=3600*q_t #Units in cal\n",
"qq=80 #Units in cal/gm\n",
"melted=Q/qq #Units in gm\n",
"print \"The ice melts by \",round(melted),\" gm\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex11.12:pg-310"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The radiation defers by 34.0 percent\n"
]
}
],
"source": [
" #Example 11_12\n",
" \n",
" \n",
" #To compare the energy emitted per unit area of our body to with the same emissivity\n",
"t1=37.0 #Units in Centigrade\n",
"t1=273+t1 #Units in K\n",
"t2=15 #Units in Centigrade\n",
"t2=273+t2 #Units in K\n",
"tb_tc=(t1/t2)**4 #Units in terms of (Tb/Tc)**4\n",
"tb_tc=tb_tc*100 #In terms of percentage\n",
"print \"The radiation defers by \",round(tb_tc-100),\" percent\"\n",
"\n",
" #In textbook answer is printed wrong as 40% the correct answer is 34%\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex11.13:pg-310"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The amount of heat lost is Q= 736363.6 J\n"
]
}
],
"source": [
" #Example 11_13\n",
" \n",
" \n",
" #To findout how much heat is lost through it\n",
"a=15 #Unis in meter**2\n",
"t=30.0 #Units in K\n",
"R=2.2 #Units in Meter**2 K/W\n",
"q_t=(a*t)/R #Units in W\n",
"T=3600.0 #Units in sec\n",
"Q=q_t*T #Units in J\n",
"print \"The amount of heat lost is Q=\",round(Q,1),\" J\"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|