1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 10: Gases and the Kinetic Theory"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.1:pg-288"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The pressure in the lungs is Pl= 109289.6 Pa\n"
]
}
],
"source": [
" import math #Example 10_1\n",
" \n",
" #To find out the pressure in Lungs\n",
"h=6 #units in cm Hg\n",
"Pa=76 #Units in cm Hg\n",
"Pl=(h+Pa) #units in cm Hg\n",
"\n",
"Pl=Pl*10**-2 #units in Meters Hg\n",
"g=9.8 #Units in Meters/cm**2\n",
"H=13600 #Constant \n",
"Pl=Pl*H*g #Units in Pa\n",
"print \"The pressure in the lungs is Pl=\",round(Pl,1),\" Pa\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.2:pg-288"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Mass per atom is= 1.054e-25 Kg/Atom\n"
]
}
],
"source": [
" import math #Example 10_2\n",
" \n",
" \n",
" #To find the mass of copper atom\n",
"maa=63.5 #Units in Kgs\n",
"n=6.022*10**26 #Units in number of atoms\n",
"Mass=maa/n #units in Kg/atom\n",
"print \"The Mass per atom is=\",round(Mass,28),\"Kg/Atom\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.3:pg-289"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The volume associated is 2.46e-29 Meter**3/Atom\n"
]
}
],
"source": [
" import math #Example 10_3\n",
" \n",
" \n",
" #To find te volume associted with mercury atom in liquid mercury\n",
"M=201.0 #Units in Kg/Kmol\n",
"n=6.02*10**26 #units in K mol**-2\n",
"mo=M/n #units in Kg\n",
"n1=13600.0 #units in Kg/Meter**3\n",
"noatoms=n1/mo #units in atoms/Meter**3\n",
"volume_atom=1/noatoms #units in Meter**3/Atom\n",
"print \"The volume associated is \",round(volume_atom,31),\"Meter**3/Atom\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.4:pg-289"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Volume occupied is V= 22.4 Meter**3/Kmol\n"
]
}
],
"source": [
" import math #Example 10_4\n",
" \n",
" \n",
" #To find the volume that one kilomole of an ideal gas occupies\n",
"p=1.013*10**5 #units in Pa\n",
"t=273.15 #units in K\n",
"n=1 #units in K mol\n",
"R=8314 #units in J/Kmol K\n",
"v=(n*R*t)/p #units in Meter**3/Kmol\n",
"print \"Volume occupied is V=\",round(v,1),\" Meter**3/Kmol\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.5:pg-290"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The pressure in the container is P= 249.0 Pa\n"
]
}
],
"source": [
" import math #Example 10_5\n",
" \n",
" \n",
" #To find the gas pressure in the container\n",
"v=5*10**-3 #units in meter**3\n",
"t=300.0 #units in K\n",
"m1=14*10**-6 #Units in Kg\n",
"M=28 #Units in Kg/Kmol \n",
"n=m1/M #units in K mol\n",
"R=8314 #units in J/Kmol K\n",
"p=(n*R*t)/v #units in Meter**3/Kmol\n",
"print \"The pressure in the container is P=\",round(p),\" Pa\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.6:pg-291"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The mass of air in flask is= 5.82e-05 Kg\n"
]
}
],
"source": [
" import math #Example 10_6\n",
" \n",
" \n",
" #To determine the mass of the air in flask\n",
"p=1.013*10**5 #Units in Pa\n",
"v=50*10**-6 #Units in meter**3\n",
"M=28.0 #Units in Kg/Mol\n",
"R=8314.0 #units in J/Kmol K\n",
"T=293 #units in K\n",
"m=(p*v*M)/(R*T) #Units in Kg\n",
"print \"The mass of air in flask is=\",round(m,7),\"Kg\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.7:pg-292"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The final pressure in the drum is P2= 1.14 atm\n"
]
}
],
"source": [
" import math #Example 10_7\n",
" \n",
" \n",
" #To find out the final pressure in the drum\n",
"p1=1 #Units in atm\n",
"t2=333.0 #units in K\n",
"t1=293.0 #units in K\n",
"p2=p1*(t2/t1) #units in atm\n",
"print \"The final pressure in the drum is P2=\",round(p2,2),\" atm\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.8:pg-292"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The final volume of gas in terms of original volume is V2= 0.05467 *V1\n"
]
}
],
"source": [
" import math #Example 10_8\n",
" \n",
" \n",
" #To find the final volume of gas\n",
"\n",
"t1=27.0 #Units in Centigrade\n",
"t1=t1+273 #Units in Kelvin\n",
"t2=547.0 #Units in Centigrade\n",
"t2=t2+273 #Units in Kelvin\n",
"t1=27.0 #Units in Centigrade\n",
"t1=t1+273 #Units in Kelvin\n",
"t1=27.0 #Units in Centigrade\n",
"t1=t1+273 #Units in Kelvin\n",
"p2=3700.0 #units in cm Hg\n",
"p1=74.0 #units in cm Hg\n",
"v1_v2=1/((t1/t2)*(p2/p1)) #In terms of V1\n",
"print \"The final volume of gas in terms of original volume is V2=\",round(v1_v2,5),\"*V1\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.9:pg-293"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Final pressure is P2= 328.0 K Pa\n"
]
}
],
"source": [
" import math #Example 10_9\n",
" \n",
" \n",
" #To find the pressure after the car has been driven at high speed\n",
"t2=308 #Units in K\n",
"t1=273.0 #Units in K\n",
"p2_p1=(t2)/t1 #In terms of P1\n",
"P1=190.0 #Units in K Pa \n",
"P2=101 #Units in K Pa \n",
"P2=p2_p1*(P1+P2) #Units in K Pa \n",
"print \"The Final pressure is P2=\",round(P2),\" K Pa\" \n",
" #In text book the answer is printed wrong as P2=329 K Pa but the correct answer is 328 K Pa \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.10:pg-294"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The nitrogen molecule goes at a speed of V= 517.0 meter/sec\n"
]
}
],
"source": [
" import math #Example 10_10\n",
"\n",
"\n",
" \n",
" #To findout how fast the nitrogen molecule moving in air\n",
"M=28.0 #Units in Kg/Mol\n",
"Na=6.02*10**26 #Units in K mol**-1\n",
"mo=M/Na #Units in Kg\n",
"k=1.38*10**-23 #units in J/K\n",
"T=27+273.0 #Units in K\n",
"v2=(3*k*T)/mo #unit in Meter**2/Sec**2\n",
"v=math.sqrt(v2) #Units in meter/sec\n",
"print \"The nitrogen molecule goes at a speed of V=\",round(v),\" meter/sec\"\n",
" #In text book the answer is printed wrong as v=517 m/sec the correct answer is v=516 meter/ sec\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|