1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
{
"metadata": {
"name": "",
"signature": "sha256:e210474f5c4fc6668f4c7b5af2adf833a1c7f62577017a980ab8d11cd8ce2886"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 7 : SPECIAL-PURPOSE DIODES"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.1 : Page number 127-128\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V_S=10.0; #Supply voltage in V\n",
"V_D=1.6; #Forward voltage drop of LED, in V\n",
"I_F=20.0; #Required limited current through LED, in mA\n",
"\n",
"#Calculations\n",
"R_S=(V_S-V_D)/(I_F/1000); #Series resistor required to limit the current through the LED, in \u2126\n",
"\n",
"#Result \n",
"print(\"The value of series resistor required to limit the current through the LED = %d \u2126.\"%R_S);\n",
" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of series resistor required to limit the current through the LED = 420 \u2126.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.2: Page number 128"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V_S=15.0; #Supply voltage in V\n",
"V_D=2.0; #Forward voltage drop of LED, in V\n",
"R_S=2200.0; #Series resistor required to limit the current through the LED, in \u2126\n",
"\n",
"#Calculations\n",
"I_F=((V_S-V_D)/R_S)*1000; #Required limited current through LED, in mA\n",
"\n",
"#Result \n",
"print(\"The current through the LED in the circuit = %.2f mA\"%I_F);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The current through the LED in the circuit = 5.91 mA\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.3: Page number 132-133"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Ir=50.0; #Dark current as observed from the current Illumination curve, in mA \n",
"V_R=10.0; #Reverse voltage in V\n",
"\n",
"#Calculation\n",
"R_R=V_R/(Ir/pow(10,6)); #Dark Resistance in \u2126\n",
"\n",
"#Result\n",
"print(\"The dark resistance is=%d k\u2126\"%(R_R/1000));\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dark resistance is=200 k\u2126\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.4: Page number 133"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"E=2.5; #Illumination in mW/cm\u00b2\n",
"m=37.4; #sensitivity of the photodiode in \ud835\udf07A/mW/cm\u00b2\n",
"\n",
"#Calculations\n",
"I_R=m*E; #Reverse current in \ud835\udf07A\n",
"\n",
"#Result\n",
"print(\"The reverese current in the photodiode = %.1f \ud835\udf07A\"%I_R);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The reverese current in the photodiode = 93.5 \ud835\udf07A\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.5: Page number 137"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi\n",
"from math import sqrt\t\n",
"#Variable declaration\n",
"L=1.0; #Inductance of the inductor in mH\n",
"C=100.0; #Capacitance of the varactor in pF\n",
"\n",
"#Result\n",
"f_r=1/(2*pi*sqrt(L*pow(10,-3)*C*pow(10,-12))); #Resonant frequency of the circuit in Hz\n",
"f_r=f_r/1000; #Resonant frequency of the circuit in kHz\n",
"\n",
"#Result\n",
"print(\"The resonant frequency of the circuit = %.1f kHz\"%f_r);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The resonant frequency of the circuit = 503.3 kHz\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|