summaryrefslogtreecommitdiff
path: root/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter1_6.ipynb
blob: 49519941fa63963f2b6d3bf32b61c6b6164a0119 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
{
 "metadata": {
  "name": "",
  "signature": "sha256:0ac98582dd0b2497034e459e869a2a3bd28001d0d4c4b37a61a8ed5d05f228e3"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "CHAPTER 1: INTRODUCTION"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "EXAMPLE 1.1: Page Number 8"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable Declaration\n",
      "Eg=24.0;                     #Generated voltage in V\n",
      "Ri=0.01;                   #Internal Resistance in \u03a9\n",
      "P=100;                     #Power supplied in watts\n",
      "\n",
      "#Calculations\n",
      "# (i)\n",
      "I=P/Eg;                         #Load current in A\n",
      "V_Ri=I*Ri;                      #Voltage drop in internal resistance\n",
      "\n",
      "# (ii)\n",
      "V=Eg-(I*Ri);                     #Terminal Voltage\n",
      "\n",
      "#Results\n",
      "print (\"The voltage drop in internal resistance is %.4f V\"%V_Ri);\n",
      "print (\"The terminal voltage is %.2f V\"%V);"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The voltage drop in internal resistance is 0.0417 V\n",
        "The terminal voltage is 23.96 V\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "EXAMPLE 1.2: Page number 10"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "Eg=500.0;                 #Generated voltage in V\n",
      "Ri=1000.0;                #Internal Resistance in \u03a9\n",
      "\n",
      "\n",
      "#Calculations\n",
      "# (i)\n",
      "RL=10;                    #Load resistance of case 1 in \u03a9 \n",
      "I= Eg/(RL+Ri);            #Load current in A\n",
      "\n",
      "print(\"The load current for RL=10\u03a9 is %.3f A\"%I);\n",
      "\n",
      "# (ii)\n",
      "RL=50;                    #Load resistance of case 2 in \u03a9 \n",
      "I= Eg/(RL+Ri);            #Load current in A\n",
      "\n",
      "print(\"The load current for RL=50\u03a9 is %.3f A\"%I);\n",
      "\n",
      "# (iii)\n",
      "RL=100;                    #Load resistance of case 3 in \u03a9 \n",
      "I= Eg/(RL+Ri);            #Load current in A\n",
      "I=round(I,3);\n",
      "\n",
      "print(\"The load current for RL=100\u03a9 is %.3f A\"%I);"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The load current for RL=10\u03a9 is 0.495 A\n",
        "The load current for RL=50\u03a9 is 0.476 A\n",
        "The load current for RL=100\u03a9 is 0.455 A\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.3: Page Number 11"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "E=10.0;                #voltage of voltage source in V\n",
      "Ri=10.0;               #Internal Resistance of the voltage source in \u03a9\n",
      "\n",
      "#Calculation\n",
      "Isc=E/Ri;                #short circuit current in A\n",
      "I=Isc;                   #Current value of current source in A\n",
      "R=Ri;                    #Internal Resistence of the current source in \u03a9\n",
      "\n",
      "#Results\n",
      "print(\"The current value of the current source= %d A\"%Isc);\n",
      "print(\"The internal resistance of the current source =%d \u03a9 \"%R);"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The current value of the current source= 1 A\n",
        "The internal resistance of the current source =10 \u03a9 \n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "EXAMPLE 1.4: Page number 11-12"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "I=6.0;                    # current value of current source in mA\n",
      "Ri=2000.0;              #Internal Resistance of the current source in \u03a9\n",
      "\n",
      "#Calcultion\n",
      "V=(I/1000)*Ri;                      #Voltage of voltage source in V\n",
      "R=Ri;                         #Internal resistance of voltage source in \u03a9\n",
      "\n",
      "#Results\n",
      "print(\"The voltage of voltage source is %d V\"%V);\n",
      "print(\"The internal resistance of the voltage source is %d \u03a9\"%R);"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The voltage of voltage source is 12 V\n",
        "The internal resistance of the voltage source is 2000 \u03a9\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.5: Page number 13\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "E=200.0;                    #Generated voltage in V\n",
      "Ri=100.0;                   #Internal Resistance of generator in \u03a9\n",
      "\n",
      "#Calculations\n",
      "#(i)\n",
      "RL=100;                      #Load resistance for 1st case in \u03a9\n",
      "I=E/(RL+Ri);                 #Load current in 1st case A\n",
      "P=(I*I)*RL;                  #Power delivered to load of 2nd case in watts\n",
      "Pt=(I*I)*(Ri+RL);            #Total power generated in watts\n",
      "\n",
      "print(\"Power delivered for RL=100\u03a9 is %d watts\"%P);\n",
      "print(\"Total power generated for RL=100\u03a9 is %d watts\"%Pt);\n",
      "\n",
      "\n",
      "#(ii)\n",
      "RL=300;                      #Load resistance for 2nd case in \u03a9\n",
      "I=E/(RL+Ri);                 #Load current in 2nd case in A\n",
      "P=(I*I)*RL;                  #Power delivered to load of 2nd case in watts\n",
      "Pt=(I*I)*(Ri+RL);            #Total power generated in watts\n",
      "\n",
      "print(\"Power delivered for RL=300\u03a9 is %d watts\"%P);\n",
      "print(\"Total power generated for RL=300\u03a9 is %d watts\"%Pt);\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Power delivered for RL=100\u03a9 is 100 watts\n",
        "Total power generated for RL=100\u03a9 is 200 watts\n",
        "Power delivered for RL=300\u03a9 is 75 watts\n",
        "Total power generated for RL=300\u03a9 is 100 watts\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.6: Page number 14"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "V=12.0;                  #Output from amplifier in V\n",
      "R_out_eq=15;           #Equivalent resistance in \u03a9\n",
      "\n",
      "#Calculations\n",
      "RL=R_out_eq;              #Load resistance in \u03a9\n",
      "Rt=RL+R_out_eq;           #Total resistance in \u03a9\n",
      "I=V/Rt;                   #Circuit current in A\n",
      "PL=pow(I,2)*RL;           #Power delivered to load in W\n",
      "\n",
      "#Results\n",
      "print(\"Load resistance required is = %d \u03a9\"%RL);\n",
      "print(\"Power delivered to load = %.1f W\"%PL);"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Load resistance required is = 15 \u03a9\n",
        "Power delivered to load = 2.4 W\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.7, Page number 14"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "V=50.0;                      #voltage from ac generator in V\n",
      "R=100.0;                     #Resistance of internal impedance in \u03a9\n",
      "XL=50.0;                     #inductive reactance of internal impedance in \u03a9\n",
      "\n",
      "#Calculation\n",
      "Zi=100+(50j);               #Internal impedance in complex form (\u03a9)\n",
      "ZL=conjugate(Zi);          #Load impedance (conjugate of internal impedance ) in \u03a9\n",
      "Zt=Zi+ZL;                  #Total impedance in \u03a9\n",
      "I=real(V/Zt);              #Circuit current in A\n",
      "\n",
      "Max_Power=pow(I,2)*R;      #Maximum power transferred to the load in watts\n",
      "\n",
      "\n",
      "#Results\n",
      "print (\"Load impedance %d %dj \u03a9\"%(real(ZL),imag(ZL)));\n",
      "print(\"Maximum power transferred to the load =%.2f W\"%Max_Power);\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Load impedance 100 -50j \u03a9\n",
        "Maximum power transferred to the load =6.25 W\n"
       ]
      }
     ],
     "prompt_number": 28
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.8: Page number 16"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#Function for calculating parallel resistance\n",
      "def pR(R1,R2):\n",
      "    return((R1*R2)/(R1+R2));\n",
      "\n",
      "\n",
      "#Variable declaration\n",
      "E=100.0;                              #Source voltage in V\n",
      "R1=10.0;                              #Resistance of resistor 1 in \u03a9\n",
      "R2=20.0;                              #Resistance of resistor 2 in \u03a9\n",
      "R3=12.0;                              #Resistance of resistor 3 in \u03a9\n",
      "R4=8.0;                               #Resistance of resistor 4 in \u03a9\n",
      "RL=100.0;                             #Resistance of load in \u03a9\n",
      "\n",
      "#Calculation\n",
      "Req=R1+pR(R3+R4,R2);                 #Equivalent resistance after removing RL ,in \u03a9\n",
      "I=E/Req;                             #Total circuit current in A\n",
      "I8=I*R2/(R2+R3+R4);\n",
      "\n",
      "#Thevenin's equivalent circuit's parameters\n",
      "E0=I8*R4;                                         #Thevenin voltage V\n",
      "R0=pR(pR(R1,R2)+R3,R4);                           #Thevenin resistance   \n",
      "I_RL=E0/(R0+RL);                                  #Load current in A  \n",
      "\n",
      "#Result \n",
      "print (\"Current through load = %.2f A.\"%I_RL);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Current through load = 0.19 A.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.9: Page number 17"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Function for calculating parallel resistance\n",
      "def pR(R1,R2):\n",
      "    return((R1*R2)/(R1+R2));\n",
      "\n",
      "\n",
      "#Variable declaration\n",
      "V=20.0;                           #Voltage source in V\n",
      "R1=1000.0;                        #resistance of resistor 1 in \u03a9\n",
      "R2=1000.0;                        #resistance of resistor 2 in \u03a9\n",
      "R3=1000.0;                        #resistance of resistor 3 in \u03a9\n",
      "\n",
      "#calculation\n",
      "#parameter for Thevenin's equivalent circuit\n",
      "E0=(V*R3)/(R1+R3);                         #thevenin voltage in V\n",
      "R0=pR(R1,R3)+R2;                     #Thevenins resistance in \u03a9\n",
      "\n",
      "#result\n",
      "print(\"The thevenin voltage = %d V\"%E0);\n",
      "print(\"The thevenin resistance = %d \u03a9\"%R0);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The thevenin voltage = 10 V\n",
        "The thevenin resistance = 1500 \u03a9\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.10: Page number 18"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "V=120.0;                          #Supply voltage in V\n",
      "R1=40.0;                          #Resistor 1's resistance in \u03a9\n",
      "R2=20.0;                          #Resistor 2's resistance in \u03a9\n",
      "R3=60.0;                          #Resistor 3's resistance in \u03a9\n",
      "\n",
      "#Calculations\n",
      "#Using Thevenin's theorem, Thevenin's voltage and resistance are calculated\n",
      "E0=(V*R2)/(R1+R2);                  #Thevenin voltage (voltage across the load resistance RL, after removing RL)in V\n",
      "R0=(R1*R2)/(R1+R2) + R3;                 #Thevenin's resistance (Resistance between the terminals of load RL, with RL removed and source voltage shorted)in \u03a9                \n",
      "RL=R0;                              #Value of load resistance to be connected for maximum power transfer in \u03a9\n",
      "Pmax=pow(E0,2)/(4*RL);              #Maximum power transferred to load in watts\n",
      "\n",
      "#Results\n",
      "print(\"The value of load resistance RL to which maximum power will be transferred = %.2f \u03a9.\"%RL);\n",
      "print(\"The maximum power transferred to load =%.2f W.\"%Pmax);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of load resistance RL to which maximum power will be transferred = 73.33 \u03a9.\n",
        "The maximum power transferred to load =5.45 W.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.11: Page number 18-19-20"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "V=80.0;                           #Supply voltage in V\n",
      "R1=100.0;                         #Resistor 1's resistance in \u03a9\n",
      "R2=100.0;                         #Resistor 2's resistance in \u03a9\n",
      "R3=30.0;                          #Resistor 3's resistance in \u03a9\n",
      "R4=80.0;                          #Resistor 4's resistance in \u03a9\n",
      "R5=20.0;                          #Resistor 5's resistance in \u03a9\n",
      "R6=60.0;                          #Resistor 6's resistance in \u03a9\n",
      "R7=20.0;                          #Resistor 7's resistance in \u03a9\n",
      "R8=50.0;                          #Resistor 8's resistance in \u03a9\n",
      "\n",
      "#Calculations\n",
      "#Using Thevenin's theorem,\n",
      "E0=(V*R2)/(R1+R2);              #Thevenin's voltage for the circuit containing V, R1, R2 in V.\n",
      "R0=(R1*R2)/(R1+R2);             #Thevenin's resistance for R1, R2 in \u03a9.\n",
      "\n",
      "#Using Thevenin's theorem again on E0, R0 and rest of the circuit resistors.\n",
      "E0_1=(E0*R4)/(R0+R3+R4);                #Thevenin's voltage for the cicruit containing E0, R0, R3, R4 in V\n",
      "R0_1=((R0+R3)*R4)/(R0+R3+R4);           #Thevenin's resistance of R0,R3,R4 (R0 and R3 in series and both in parallel with R4), in \u03a9 \n",
      "\n",
      "#Using Thevenin's theorem again on E0_1, R0_1, and rest of the circuit resistors.\n",
      "E0_2=(E0_1*R6)/(R0_1+R5+R6);                       #Thevenin's voltage for the circuit containing E0_1, R0_1, R5, R6 in V\n",
      "R0_2=((R0_1+R5)*R6)/(R0_1+R5+R6);                  #Thevenin's resistance of R0_1,R5,R6 (R0 and R3 in series and both in parallel with R4), in \u03a9\n",
      "\n",
      "\n",
      "I_50=E0_2/(R0_2+R7+R8);                           #Current through the 50 \u03a9 resistor in A\n",
      "\n",
      "\n",
      "#Results\n",
      "print(\"The current through the 50 \u03a9 resistor =%.1f A.\"%I_50);"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The current through the 50 \u03a9 resistor =0.1 A.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.12: Page number 22\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from math import floor\n",
      "#Variable declaration\n",
      "V=40.0;                       #Voltage supply in V\n",
      "R1=4.0;                       #Resistor 1's resistance in \u03a9\n",
      "R2=6.0;                       #Resistor 2's resistance in \u03a9\n",
      "R3=5.0;                       #Resistor 3's resistance in \u03a9\n",
      "R4=8.0;                       #Resistor 4's resistance in \u03a9\n",
      "\n",
      "\n",
      "#Calculation\n",
      "#Using Norton's theorem,\n",
      "#calculating Norton current by removing the load resistance R4 and short circuiting those two terminals of the circuit\n",
      "R=R1 + (R2*R3)/(R2+R3);         #Load on source after removing R4 resistor, in  \u03a9\n",
      "I=V/R;                          #Source current in A\n",
      "\n",
      "#Using current dividing rule ,calculating the short circuit current.\n",
      "I_N=(I*R2)/(R2+R3);             #Norton's equivalent current or the short circuit current in A\n",
      "\n",
      "R_N=R3 + (R1*R2)/(R1+R2);       #Norton's equivalent resistance in \u03a9\n",
      "\n",
      "I_8=(I_N*R_N)/(R_N+R4);         #Current through the 8 \u03a9 resistance in A\n",
      "\n",
      " \n",
      "\n",
      "#Results\n",
      "print(\"The current through the 8\u03a9 resistance =%.2f A.\"%I_8);\n",
      "\n",
      "#Note: The answer in the book is 1.55 A, but in the above code the approximate value is obtained, i.e not 1.55A but 1.56A\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The current through the 8\u03a9 resistance =1.56 A.\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1.13 :Page number 23\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "V1=30.0;                #Voltage source 1, V\n",
      "V2=18.0;                #Voltage source 2, V\n",
      "R1=20.0;                #1st resistor, \u03a9\n",
      "R2=10.0;                #2nd resistor, \u03a9\n",
      "\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Finding Thevenin's Equivalent circuit\n",
      "I=(V1-V2)/(R1+R2);              #Current in the circuit, A\n",
      "\n",
      "#Applying Kirchhoff's voltage law to 1st loop of the circuit,\n",
      "#V1-I*R1-E0=0, where E0 is the voltage across the points X-Y.\n",
      "E0=V1-I*R1;                     #Thevenin's voltage source, V\n",
      "\n",
      "R0=R1*R2/(R1+R2);               #Thevenin's resistance, \u03a9\n",
      "\n",
      "#Finding Norton's equivalent circuit\n",
      "IN=E0/R0;                   #Norton's equivalent current source, A\n",
      "RN=R0;                      #Norton's equivanlent resistance, \u03a9\n",
      "\n",
      "#Result\n",
      "print(\"IN=%.1fA and RN=%.2f \u03a9\"%(IN,RN));\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "IN=3.3A and RN=6.67 \u03a9\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}