summaryrefslogtreecommitdiff
path: root/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter15_6.ipynb
blob: e649cc91e026e2b087ecdd884fc89ac45f67bdac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
{
 "metadata": {
  "name": "",
  "signature": "sha256:034eec32676d4e7abdedfb3bf68426d81a2d1483fc668bcbfdb5be18cec2e406"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "CHAPTER 15: TRANSISTOR TUNED AMPLIFIERS"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.1 : Page number 394"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "C=250.0*10**-12;                       #Capacitor of parallel resonant circuit, F\n",
      "L=1.25*10**-3;                         #Inductor of the parallel resonant circuit, H\n",
      "R=10.0;                                #Resistor of the parallel resonant circuit, ohm\n",
      "\n",
      "#Calculation\n",
      "#(i) Resonant frequency\n",
      "fr=((1/(2*pi))*sqrt((1/(L*C))-(R/L)**2))/1000;                         #Resonant frequecy, kHz\n",
      "\n",
      "#(ii)  Impedance of the circuit at resonance\n",
      "Zr=(L/(C*R))/1000;                          #Impedance of the circuit at resonance, kilo ohm\n",
      "\n",
      "#(iii) Quality factor of the circuit\n",
      "Q=2*pi*(fr*10**3)*L/R;                          #Quality factor of the circuit\n",
      "\n",
      "#Result\n",
      "print(\"(i) The resonant frequency=%.1fkHz.\"%fr);\n",
      "print(\"(ii) The impedance of the circuit at resonance=%d kilo ohm.\"%Zr);\n",
      "print(\"(iii) The quality factor of the circuit=%.1f.\"%Q);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) The resonant frequency=284.7kHz.\n",
        "(ii) The impedance of the circuit at resonance=500 kilo ohm.\n",
        "(iii) The quality factor of the circuit=223.6.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.2 : Page number 394-395\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "C=100.0*10**-12;                        #Capacitor of parallel resonant circuit, F\n",
      "L=100.0*10**-6;                         #Inductor of the parallel resonant circuit, H\n",
      "R=10.0;                                 #Resistor of the parallel resonant circuit, ohm\n",
      "V=10.0;                                 #Supply voltage, V\n",
      "\n",
      "#Calculation\n",
      "#(i) Resonant frequency\n",
      "fr=((1/(2*pi))*sqrt((1/(L*C))-(R/L)**2))/1000;                         #Resonant frequecy, kHz\n",
      "\n",
      "#(ii)  Impedance of the circuit at resonance\n",
      "Zr=(L/(C*R))/10**6;                          #Impedance of the circuit at resonance, mega ohm\n",
      "\n",
      "I=V/Zr;                                     #Line current at resonance, microampere\n",
      "\n",
      "#Result\n",
      "print(\"(i) The resonant frequency=%.2fkHz.\"%fr);\n",
      "print(\"(ii) The impedance of the circuit at resonance=%.1f mega ohm.\"%Zr);\n",
      "print(\"The line current at resonance=%d micro ampere.\"%I);\n",
      "\n",
      "#Note : The resonant frequency in the text has been calculated as 1592.28 kHz, but here it gets approximated to 1591.47 kHz.\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) The resonant frequency=1591.47kHz.\n",
        "(ii) The impedance of the circuit at resonance=0.1 mega ohm.\n",
        "The line current at resonance=100 micro ampere.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.3 : Page number 395\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "C=250.0*10**-12;                              #Capacitor of parallel resonant circuit, F\n",
      "Zr=500.0*10**3;                               #Dynamic impedance, ohm\n",
      "R=10.0;                                       #Resistance of the coil, ohm\n",
      "\n",
      "\n",
      "#Calculation\n",
      "#(i)\n",
      "#Since,Zr=L/CR,\n",
      "L=(Zr*C*R)*10**3;                           #Inductance of the coil, mH\n",
      "\n",
      "#(ii) Resonant frequency\n",
      "fr=((1/(2*pi))*sqrt((1/(L*10**-3*C))-(R/(L*10**-3))**2))/1000;                         #Resonant frequecy, kHz\n",
      "\n",
      "#(iii) Quality factor of the circuit\n",
      "Q=2*pi*(fr*10**3)*(L*10**-3)/R;                          #Quality factor of the circuit\n",
      "\n",
      "#Result\n",
      "print(\"(i) The inductance of the coil=%.2fmH.\"%L);\n",
      "print(\"(ii) The resonant frequency=%.1fkHz.\"%fr);\n",
      "print(\"(iii) The quality factor of the circuit=%.1f.\"%Q);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) The inductance of the coil=1.25mH.\n",
        "(ii) The resonant frequency=284.7kHz.\n",
        "(iii) The quality factor of the circuit=223.6.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.4  : Page number 397\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "Q=60.0;                     #Quality factor of the tuned amplifier\n",
      "fr=1200.0;                  #Resonant frequency, kHz\n",
      "\n",
      "#Calculation\n",
      "#(i)\n",
      "BW=fr/Q;                    #Bandwidth, kHz\n",
      "\n",
      "#(ii)\n",
      "f1=fr-(BW/2);                       #Lower cut-off frequency, kHz\n",
      "f2=fr+(BW/2);                       #Upper cut-off frequency, kHz\n",
      "\n",
      "#Result\n",
      "print(\"(i)  The bandwidth=%dkHz\"%BW);\n",
      "print(\"(ii) The lower and upper cut-off frequencies are=%dkHz and %dkHz.\"%(f1,f2));\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)  The bandwidth=20kHz\n",
        "(ii) The lower and upper cut-off frequencies are=1190kHz and 1210kHz.\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.5 : Page number 397\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "fr=2.0;                     #Resonant frequency, MHz\n",
      "BW=50.0;                    #Bandwidth, kHz\n",
      "\n",
      "#Calculation\n",
      "#Since, bandwidth=resonant_frequency/quality_factor\n",
      "Q=(fr*10**6)/(BW*10**3);                            #Quality factor\n",
      "\n",
      "#Result\n",
      "print(\"The quality factor=%d\"%Q);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The quality factor=40\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.7 : Page number 400\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "C=0.1*10**-6;                          #Capacitor of parallel resonant circuit, F\n",
      "L=33.0*10**-3;                         #Inductor of the parallel resonant circuit, H\n",
      "R=25.0;                                #Resistor of the parallel resonant circuit, ohm\n",
      "\n",
      "\n",
      "#Calculation\n",
      "#(i)\n",
      "fr=(1/(2*pi*sqrt(L*C)))/1000;                  #Resonant frequency, kHz\n",
      "\n",
      "#(ii)\n",
      "XL=2*pi*(fr*10**3)*L;                           #Inductive reactance, ohm\n",
      "Q=round(XL/R,0);                                #Quality factor\n",
      "\n",
      "#(iii)\n",
      "BW=(fr*10**3)/Q;                                #Bandwidth\n",
      "\n",
      "#Result\n",
      "print(\"(i)   The resonant frequency=%.2fkHz\"%fr);\n",
      "print(\"(ii)  The quality factor= %d.\"%Q);\n",
      "print(\"(iii) The bandwidth=%dHz.\"%BW);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)   The resonant frequency=2.77kHz\n",
        "(ii)  The quality factor= 23.\n",
        "(iii) The bandwidth=120Hz.\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.8 : Page number 401-402\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "BW_dt=200.0;                       #Bandwidth, kHz\n",
      "fr=10.0;                        #Operating frequency, MHz\n",
      "\n",
      "#Calculation\n",
      "#Since, BW_dt=k*fr (i.e.,co-efficient_of_coupling * operating_frequency)\n",
      "k=BW_dt/(fr*10**3);                     #co-efficient of coupling\n",
      "\n",
      "#Result\n",
      "print(\"The co-efficient of coupling=%.2f.\"%k);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The co-efficient of coupling=0.02.\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.9 : Page number 405\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "C=500.0*10**-12;                          #Capacitor of parallel resonant circuit, F\n",
      "L=50.7*10**-6;                            #Inductor of the parallel resonant circuit, H\n",
      "R=10.0;                                   #Resistor of the parallel resonant circuit, ohm\n",
      "RL=1.0;                                   #Load resistance, mega ohm\n",
      "\n",
      "#Calculation\n",
      "#(i)\n",
      "fr=round((1/(2*pi*sqrt(L*C)))/1000);                  #Resonant frequency, Hz\n",
      "\n",
      "#(ii)\n",
      "R_dc=R;                                             #d.c load, ohm\n",
      "XL=2*pi*(fr*1000)*L;                                       #Inductive reactance, ohm\n",
      "Q_coil=round(XL/R,1);                               #Quality factor\n",
      "R_P=(Q_coil*XL)/1000   ;                            #Equivalent parallel resistance, kilo ohm\n",
      "R_AC=(R_P*RL*10**3)/(R_P+RL*10**3);                 #A.C load,kilo ohm\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"(i)   The resonant frequency=%dkHz\"%fr);\n",
      "print(\"(ii)  d.c load=%d ohm and a.c load=%d kilo ohm.\"%(R_dc,R_AC));\n",
      "\n",
      "#Note: In the text resonant frequency has been wrongly calculated to 106kHz but its actual value is approximately 1000kHz\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)   The resonant frequency=1000kHz\n",
        "(ii)  d.c load=10 ohm and a.c load=10 kilo ohm.\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.10 : Page number 406-407\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "RL=50.0;                #Load resistance, ohm\n",
      "n=5;                    #Turns ratio of the transformer\n",
      "VCC=50.0;               #Supply voltage, V\n",
      "\n",
      "#Calculation\n",
      "#(i)\n",
      "R_ac=n**2*RL;               #A.C load, ohm\n",
      "\n",
      "#(ii)\n",
      "P_o_max=VCC**2/(2*R_ac);                #Maximum load power, W\n",
      "\n",
      "#Result\n",
      "print(\"(i)  The a.c load=%d ohm\"%R_ac);\n",
      "print(\"(ii) Maximum load power=%dW\"%P_o_max);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)  The a.c load=1250 ohm\n",
        "(ii) Maximum load power=1W\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.11 : Page number 407\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "P_D=4.0;                    #Maximum power dissipation, mW\n",
      "P_o_max=1.0;                #Maximum load power, W\n",
      "\n",
      "\n",
      "#Calculation\n",
      "max_collector_eff=(P_o_max/(P_o_max+(P_D/1000)))*100;         #Maximum collector efficiency\n",
      "\n",
      "#Result\n",
      "print(\"The maximum collector efficiency=%.1f%%\"%max_collector_eff);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum collector efficiency=99.6%\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}