summaryrefslogtreecommitdiff
path: root/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter14_6.ipynb
blob: 5e35882c6192d630d8a34f019c8d590a58784f9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
{
 "metadata": {
  "name": "",
  "signature": "sha256:ec0d27209d08b0b95750f66ce9ee21af5ef586e23d0bf0ea218aa20a4ce63e43"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "#CHAPTER 14: SINUSOIDAL OSCILLATORS"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.1 : Page number 371-372\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "L1=58.6;                #Inductance, micro henry\n",
      "C1=300.0;               #Capacitance, pF\n",
      "\n",
      "#Calculation\n",
      "f=(1/(2*round(pi,2)*sqrt(L1*10**-6*C1*10**-12)))/1000;         #Frequency of oscillation, kHz\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"frequency of oscillation=%dkHz\"%f);\n",
      "\n",
      "\n",
      "#Note : The frequency has been calculated in the text  as 1199kHz but here the answer gets approximated to 1200kHz.\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "frequency of oscillation=1200kHz\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.2 : Page number 372\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "L1=1.0;                     #Inductance , mH\n",
      "f=1.0;                      #frequency of oscillation, GHz\n",
      "\n",
      "#Calculation\n",
      "#Since, f=1/(2*pi*sqrt(L1*C1)),\n",
      "C1=(1/(L1*10**-3*(f*10**12*2*pi)**2))*10**12;               #Capacitance, pF\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"The Capacitance of the capacitor of the LC oscillator=%.2epF\"%C1);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Capacitance of the capacitor of the LC oscillator=2.53e-11pF\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.3 : Page number 373-374\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi\n",
      "from math import sqrt\n",
      "\n",
      "#Variable declaration\n",
      "C1=0.001;               #Capacitor C1, microfarad\n",
      "C2=0.01;                #Capacitor C2, microfarad\n",
      "L=15.0;                 #Inductance, microhenry\n",
      "\n",
      "#Calculation\n",
      "CT=C1*C2/(C1+C2);               #Total capacitance\n",
      "\n",
      "#(i) Operating frequency\n",
      "f=(1/(2*pi*sqrt(CT*10**-6*L*10**-6)))/1000;             #Operating frequency, kHz\n",
      "\n",
      "#(ii) Feedback fraction\n",
      "mv=C1/C2;                                   #Feedback fraction\n",
      "\n",
      "#Result\n",
      "print(\"(i)  The operating frequency=%dkHz\"%f);\n",
      "print(\"(ii) The feedback fraction=%.1f\"%mv);\n",
      "\n",
      "#Note : The operating frequency is calculated in the text as 1361kHz but here it has been approximated to 1362kHz\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)  The operating frequency=1362kHz\n",
        "(ii) The feedback fraction=0.1\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.4 : Page number 374: Page number\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "mv=0.25;                    #Feedback fraction\n",
      "L=1.0;                      #Inductance, mH\n",
      "f=1.0;                      #Operating frequeny, MHz\n",
      "\n",
      "#Calculation\n",
      "#Since, f=1/(2*pi*sqrt(L*C))\n",
      "CT=round((1/(L*10**-3*(2*pi*f*10**6)**2))*10**12,1);              #Total capacitance, pF\n",
      "\n",
      "#Since, mv=C1/C2 and CT=C1*C2/(C1+C2) or CT=C2/(1+ (C2/C1)),\n",
      "#From the above equations, substituting value of mv and calculaing value of C2,\n",
      "C2=CT*(1+(1/mv));               #Capacitance of C2 capactior, pF\n",
      "C1=mv*C2;                       #Capacitance of C1 capacitor, pF\n",
      "\n",
      "#Result\n",
      "print(\"C1=%.1fpF and C2=%.1fpF\"%(C1,C2));\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "C1=31.6pF and C2=126.5pF\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.5 : Page number 375-376\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "from math import pi\n",
      "\n",
      "#Variable decalaration\n",
      "L1=1000.0;                  #Inductance of L1 inductor, microhenry\n",
      "L2=100.0;                   #Inductance of L2 inductor, microhenry\n",
      "M=20.0;                     #Mutual inductance, microhenry\n",
      "C=20.0;                     #Capacitance, pF\n",
      "\n",
      "#Calculation\n",
      "LT=L1+L2+2*M;                   #Total inductance, microhenry\n",
      "\n",
      "#(i) Operating frequency\n",
      "f=(1/(2*pi*sqrt(LT*10**-6*C*10**-12)))/1000;           #Operating frequency, kHz\n",
      "\n",
      "#(ii)\n",
      "mv=L2/L1;                   #feedback fraction\n",
      "\n",
      "#Result\n",
      "print(\"(i)  The operating frequency=%dkHz.\"%f);\n",
      "print(\"(ii) The feedback fraction=%.1f.\"%mv);\n",
      "\n",
      "#Note : The operating frequecy has been calculated in the text as 1052kHz but here it gets approximated to 1054kHz\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)  The operating frequency=1054kHz.\n",
        "(ii) The feedback fraction=0.1.\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.6 : Page number 376\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "C=1.0;                  #Capacitance, pF\n",
      "f=1.0;                  #Frequency, MHz\n",
      "mv=0.2;                 #Feedback frequency\n",
      "\n",
      "\n",
      "#Calculation\n",
      "LT=(1/(C*10**-12*(2*pi*f*10**6)**2))*1000;               #Total inductance, mH\n",
      "\n",
      "#Since, mv=L2/L1 or L2=mv*L1 and L1+L2=LT or L1(1+mv)=LT,\n",
      "L1=LT/(1+mv);                   #Inductance of L1 inductor, mH\n",
      "L2=L1*mv;                       #inductance of L2 inductor, mH\n",
      "\n",
      "#Result\n",
      "print(\"L1=%.1fmH and L2=%.2fmH.\"%(L1,L2));\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "L1=21.1mH and L2=4.22mH.\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.7 : Page number 378\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "R1=1.0;                 #Resistor R1, mega ohm\n",
      "R2=R1;                  #Resistor R2, mega ohm\n",
      "R3=R1;                  #Resistor R3, mega ohm\n",
      "C1=68.0;                #Capacitor C1, pF\n",
      "C2=C1;                  #Capacitor C2, pF\n",
      "C3=C1;                  #Capacitor C3, pF\n",
      "\n",
      "\n",
      "#Calculation\n",
      "R=R1*10**6;                   #Resistance of the resistors of phase shift circuit, ohm\n",
      "C=C1*10**-12;                 #Capacitance of the capacitors of phase shift circuit, F\n",
      "fo=1/(2*pi*R*C*sqrt(6));      #Frequency of oscillation, Hz\n",
      "\n",
      "#Result\n",
      "print(\"The frequency of oscillation=%dHz\"%fo);\n",
      "\n",
      "#Note: The frequency of oscillation had been calculated in the text as 954Hz, but here it gets approximated to 955 HZ.\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The frequency of oscillation=955Hz\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.8 : Page number 378\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi\n",
      "from math import sqrt\n",
      "\n",
      "#Variable declaration\n",
      "C=5.0;                      #Capacitance of the capacitors of phase shift circuit, pF\n",
      "fo=800.0;                    #Required frequency of oscillation, kHz\n",
      "\n",
      "#Calculation\n",
      "#Since, fo=1/(2*pi*R*C*sqrt(6))\n",
      "R=(1/(2*pi*C*10**-12*fo*10**3*sqrt(6)))/1000;                   #Resistance of the resistors of phase shift circuit, kilo ohm\n",
      "\n",
      "#Result\n",
      "print(\"R=%.1f kilo ohm.\"%R);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "R=16.2 kilo ohm.\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.9 : Page number 380\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "#Resistance of R1 and R2 resistors of the R-C bridge circuit\n",
      "R1=220.0;                           #kilo ohm \n",
      "R2=220.0;                           #kilo ohm\n",
      "\n",
      "#Capacitance of C1 and C2 the capacitors of the R-C bridge circuit\n",
      "C1=250.0;                           #pF\n",
      "C2=250.0;                           #pF\n",
      "\n",
      "#Calculation\n",
      "#Since, R1=R2 and C1=C2, R1=R2 is taken as R and C1=C2 is taken as C\n",
      "#And, f=1/(2*pi*sqrt(R1*R2*C1*C2))is transformed to f=1/(2*pi*R*C).\n",
      "R=R1*10**3;                                   #kilo ohm\n",
      "C=C1*10**-12;                                   #pF\n",
      "f=1/(2*pi*R*C);           #Frequency of oscillation, Hz\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"The frequency of oscillation=%dHz.\"%f);\n",
      "\n",
      "\n",
      "#Note : The frequency of oscillation is calculated in the text as 2892Hz but here it gets approximated to 2893 Hz.\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The frequency of oscillation=2893Hz.\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.11 : Page number 384\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "#a.c equivalent values of the crystal:\n",
      "L=1.0;                          #Inductance , H\n",
      "C=0.01;                         #Capacitance , pF\n",
      "R=1000.0;                       #Resistance , ohm\n",
      "Cm=20.0;                        #Mounting capacitance, pF\n",
      "\n",
      "#Calculation\n",
      "fs=(1/(2*round(pi,2)*sqrt(L*C*10**-12)))/1000;               #Series resonant frrequency, kHz\n",
      "CT=(C*Cm/(C+Cm));                                            #Total capacitance, pF\n",
      "fp=(1/(2*round(pi,2)*sqrt(L*CT*10**-12)))/1000;              #Prallel resonant frequency, kHz\n",
      "\n",
      "#Result\n",
      "print(\"fs=%.0fkHz and fp=%.0fkHz.\"%(fs,fp));\n",
      "\n",
      "#Note: fs and fp are calculated in the text as 1589kHz and 1590kHz, but here it gets approximated to 1592kHz and 1593kHz\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "fs=1592kHz and fp=1593kHz.\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}