summaryrefslogtreecommitdiff
path: root/Principles_of_Electronics_____by_V.K._Mehta_and_Rohit_Mehta/chapter12_6.ipynb
blob: 05e3d9d8fa56937ff58cfa7ff357b8bff5838aff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
{
 "metadata": {
  "name": "",
  "signature": "sha256:1e9209171152811793fc18d1ee8c80ddcef574d69421ec87eeaa8fb87a304f6d"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "CHAPTER 12: TRANSISTOR AUDIO POWER AMPLIFIERS"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.1 : Page number 308\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "VCC=10.0;                               #Collector supply voltage, V\n",
      "R1=10.0;                                #Resistor R1, kilo ohm\n",
      "R2=2.2;                                 #Resistor R2, kilo ohm\n",
      "RC=3.6;                                 #Collector resistor, kilo ohm\n",
      "RE=1.1;                                 #Emitter resistor, kilo ohm\n",
      "VBE=0.7;                                #Base-emitter voltage, V\n",
      "\n",
      "#Calculation\n",
      "I1=VCC/(R1+R2);                     #Current through R1 and R2, mA (OHM's LAW)\n",
      "V2=I1*R2;                           #Voltage across R2 resistor, V (OHM's LAW)\n",
      "VE=V2-VBE;                          #Emitter voltage, V\n",
      "IE=VE/RE;                           #Emitter current, mA (OHM's LAW)\n",
      "IC=IE;                              #Collector current, mA (approximately equal to emitter current)\n",
      "I_T=I1+IC;                          #Total current drawn from the supply, mA\n",
      "P_dc=VCC*I_T;                       #Total power drawn from the supply, mW\n",
      "\n",
      "\n",
      "#Results\n",
      "print(\"The total power drawn from the supply=%.1fmW.\"%P_dc);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The total power drawn from the supply=18.2mW.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.2 : Page number 309\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "V_L=10.6;                       #Voltage across load, V.(from a.c voltmeter, therfore r.m.s value)\n",
      "R_L=200.0;                      #Load resistance, ohm\n",
      "\n",
      "#Calculation\n",
      "#Since, power =V**2/R,\n",
      "P_O=(V_L**2/R_L)*1000;                     #A.C output power, mW\n",
      "\n",
      "#Result\n",
      "print(\"The a.c output power = %.1fmW.\"%P_O);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The a.c output power = 561.8mW.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.3 : Page number 309\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "RL=100.0;                   #Load resistance, ohm\n",
      "V_PP=18.0;                  #Peak-to-peak a.c voltage, V\n",
      "\n",
      "#Calculation\n",
      "#Since, V(r.m.s)=(V(peak-to-peak)/2)/sqrt(2)\n",
      "VL=V_PP/(2*(2**0.5));                      #r.m.s value, V\n",
      "\n",
      "#Since, power=(square of voltage)/resistance\n",
      "P_O_max=(VL**2/RL)*1000;                   #Maximum possible a.c load power, mW\n",
      "\n",
      "#Result\n",
      "print(\"The maximum possible a.c load power=%dmW.\"%P_O_max);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum possible a.c load power=405mW.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.4 : Page number 310\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "V_battery=12.0;                 #Battery voltage, V\n",
      "P_out=2.0;                      #Output power, W\n",
      "\n",
      "#Calculation\n",
      "#Since, Power=Current*Voltage\n",
      "IC=(P_out/V_battery)*1000;                 #Maximum collector current , mA\n",
      "\n",
      "#Result\n",
      "print(\"The maximum collector current=%.1fmA.\"%IC);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum collector current=166.7mA.\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.5 : Page number 310\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "V_battery=12.0;                     #Battery voltage, V\n",
      "RL=4.0;                             #Collector load, kilo ohm\n",
      "\n",
      "#Calculation\n",
      "IC_max=V_battery/RL;                #Maximum collector current, mA\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"The maximum collector current=%dmA.\"%IC_max);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum collector current=3mA.\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.6 : Page number 310-311\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "P=50.0;                     #Power supplied by power amplifier, W\n",
      "R=8.0;                      #Resistance of speaker, ohm\n",
      "\n",
      "#Calculation\n",
      "#(i)\n",
      "#Since, Power=Voltage _square/Resistance,\n",
      "V=(P*R)**0.5;               #a.c output voltage, V\n",
      "\n",
      "#(ii)\n",
      "I=V/R;                          #a.c output current, A (OHM's LAW)\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"(i) The a.c output voltage=%dV.\"%V);\n",
      "print(\"(ii) The a.c output current=%.1fA.\"%I);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) The a.c output voltage=20V.\n",
        "(ii) The a.c output current=2.5A.\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.7 : Page number 315\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "VCC=20.0;                   #Collector supply voltage, V\n",
      "ib_peak=10.0;               #Base current(peak), mA\n",
      "RB=1.0;                     #Base resistance, kilo ohm\n",
      "RC=20.0;                    #Collector resistance, ohm\n",
      "beta=25.0;                  #Base current amplification factor\n",
      "VBE=0.7;                    #Base-emitter voltage, V\n",
      "\n",
      "#Calculation\n",
      "IB=round(VCC-VBE/RB,1);                         #Base current, mA (OHM's LAW)\n",
      "IC=int(beta*IB);                            #Collector current, mA\n",
      "VCE=VCC-(IC/1000)*RC;                  #Collector emitter voltage, V (KVL)\n",
      "\n",
      "#(i)\n",
      "ic_peak=beta*ib_peak;                          #Collector current(peak), mA\n",
      "P_o_ac=(ic_peak/1000)**2*RC/2;                 #Output power, W\n",
      "\n",
      "#(ii)\n",
      "P_dc=VCC*IC/1000;                                    #Input power, W\n",
      "\n",
      "#(iii)\n",
      "collector_efficiency=(P_o_ac/P_dc)*100;                   #Collector efficiency of the amplifier circuit,\n",
      "\n",
      "#Result\n",
      "print(\"(i) The output power=%.3fW.\"%P_o_ac);\n",
      "print(\"(ii) The input power=%.1fW.\"%P_dc);\n",
      "print(\"(iii) The collector efficiency=%.1f%%.\"%collector_efficiency);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) The output power=0.625W.\n",
        "(ii) The input power=9.6W.\n",
        "(iii) The collector efficiency=6.5%.\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.8 : Page number 317\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "P_dc=10.0;                  #zero signal power dissipation, W\n",
      "P_o=4.0;                    #a.c output power, W\n",
      "\n",
      "#Calculation\n",
      "#(i)\n",
      "Collector_eff=(P_o/P_dc)*100;                 #collector efficiency\n",
      "\n",
      "#(ii)\n",
      "#Zero signal power is the maximum power dissipation in a transistor, therefore,\n",
      "Power_rating=P_dc;                  #Power rating of the transistor, W\n",
      "\n",
      "#Result\n",
      "print(\"(i) The collector efficiency=%d%%.\"%Collector_eff);\n",
      "print(\"(i) The power rating of the transistor=%dW.\"%Power_rating);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) The collector efficiency=40%.\n",
        "(i) The power rating of the transistor=10W.\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.9 : Page number 317-318\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "RL=100.0;                   #Secondary load, ohm\n",
      "n=10.0;                     #Transformer turn ratio\n",
      "IC=100.0;                   #Zero signal collector current, mA\n",
      "\n",
      "#Calculation\n",
      "RL_reflected=n**2*RL;                        #Reflected load as seen by the primary of the transformer, ohm\n",
      "P_o_ac_max=(IC/1000)**2*RL_reflected/2;             #Maximum a.c power output, W      \n",
      "\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"The maximum a.c power output=%dW.\"%P_o_ac_max);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum a.c power output=50W.\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.10 : Page number 318\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "VCC=5.0;                    #Collector supply voltage, V\n",
      "IC=50.0;                    #Zero signal collector current, mA\n",
      "\n",
      "#Calculation\n",
      "#(i)\n",
      "P_o_max=VCC*IC/2;           #Maximum a.c output power, mW\n",
      "\n",
      "#(ii)\n",
      "P_dc=VCC*IC;                #D.C input power, mW\n",
      "#Since, maximum power is dissipated in the zero signal conditions\n",
      "Power_rating=P_dc;              #Power rating of transistor, mW\n",
      "\n",
      "#(iii)\n",
      "Max_collector_eff=(P_o_max/P_dc)*100;             #Maximum collector efficiency\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"(i) The maximum a.c output power=%dmW\"%P_o_max);\n",
      "print(\"(ii) The power rating of the transistor=%dmW.\"%Power_rating);\n",
      "print(\"(iii) The maximum collector efficiency =%d%%.\"%Max_collector_eff);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) The maximum a.c output power=125mW\n",
        "(ii) The power rating of the transistor=250mW.\n",
        "(iii) The maximum collector efficiency =50%.\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.11 : Page number 318\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "\n",
      "#Variable declaration\n",
      "ic_max=160.0;               #Maximum a.c collector current, mA\n",
      "ic_min=10.0;                #Minimum a.c collector current, mA\n",
      "vce_max=12.0;               #Maximum collector-emitter voltage, V\n",
      "vce_min=2.0;                #Minimum collector-emitter voltage, V\n",
      "\n",
      "#Calculation\n",
      "vce_pp=vce_max-vce_min;                                #peak to peak collector emitter voltage, V\n",
      "ic_pp=ic_max-ic_min;                                   #peak to peak collector current, V\n",
      "P_o=(vce_pp/(2*sqrt(2)))*(ic_pp/(2*sqrt(2)));          #a.c output power, mW\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"The a.c output power=%.1fmW.\"%P_o);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The a.c output power=187.5mW.\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.12 : Page number 319-320\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt \n",
      "\n",
      "#Variable declaration\n",
      "VCC=12.0;                           #Battey voltage, V\n",
      "IC_max_change=100.0;                #maximum collector current change, mA\n",
      "RL=5.0;                             #Loudspeaker resistance, ohm\n",
      "\n",
      "#Calculation\n",
      "VCE_max_change=VCC;                                         #Maximum collector-emitter voltage change\n",
      "#(i) Loud speaker directly connected in the collector\n",
      "Vmax_speaker=(IC_max_change/1000)*RL;                              #Maximum voltage across the loudspeaker, V\n",
      "P_speaker_directly_coupled=Vmax_speaker*IC_max_change;                       #Power developed in the loudspeaker,mW\n",
      "\n",
      "#(ii) Loudspeaker transformer coupled\n",
      "Z_out=(VCE_max_change/IC_max_change)*1000;                     #Output impedance of transistor, ohm\n",
      "\n",
      "#For max power transfer, primary impedance should be Z_out\n",
      "RL_reflected=Z_out;                                         #Load resistance as seen by primary, ohm\n",
      "n=sqrt(RL_reflected/RL);                                    #Turns ratio of transformer\n",
      "Vp=VCC;                                                     #Transformer primary voltage, V\n",
      "Vs=Vp/n;                                                    #Transformer secondary voltage, V\n",
      "IL=Vs/RL;                                                   #Load current, A\n",
      "P_speaker_transformer_coupled=IL**2*RL*1000;                #Power delivered to the speaker, mW\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"(i)  The power transferred to the speaker when directly coupled=%dmW.\"%P_speaker_directly_coupled);\n",
      "print(\"(ii) The power trasnferred to the speaker when transformer-coupled=%dmW.\"%P_speaker_transformer_coupled);\n",
      "print(\"     The turns ratio=%.1f.\"%n);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)  The power transferred to the speaker when directly coupled=50mW.\n",
        "(ii) The power trasnferred to the speaker when transformer-coupled=1200mW.\n",
        "     The turns ratio=4.9.\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.13 : Page number 320-321\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "\n",
      "#Variable declaration\n",
      "beta=100.0;                                 #Base current amplification factor\n",
      "RL=81.6;                                    #Load resistance, ohm\n",
      "VCE_peak=30.0;                               #Peak value of collector voltage, V\n",
      "IC_peak=35.0;                               #Peak value of collector current, mA\n",
      "VCE_min=5.0;                                 #Minimum value of collector voltage, V\n",
      "IC_min=1.0;                                 #Minimum value of collector current, mA\n",
      "\n",
      "\n",
      "#Calculation\n",
      "#(i)\n",
      "IC_zero_signal=(IC_peak-IC_min)/2 +1;                  #Zero signal collector current, mA\n",
      "\n",
      "#(ii)\n",
      "IB_zero_signal=IC_zero_signal/beta;                 #Zero signal base current, mA\n",
      "\n",
      "#(iii)\n",
      "VCE_zero_signal=(VCE_peak-VCE_min)/2 +5;                    #Zero signal collector-emitter voltage, V\n",
      "VCC=VCE_zero_signal;                                    #Collector supply voltage,V (due to transformer coupling, aproximately equal to zero signal VCE)\n",
      "P_dc=VCC*IC_zero_signal;                                #d.c input power, mW\n",
      "VCE_ac=(VCE_peak-VCE_min)/(2*sqrt(2));                         #a.c output voltage, V\n",
      "IC_ac=(IC_peak-IC_min)/(2*sqrt(2));                           #a.c output  current, mA\n",
      "P_ac=VCE_ac*IC_ac;                                      #a.c output power, mW\n",
      "\n",
      "#(iv)\n",
      "collector_eff=(P_ac/P_dc)*100;                          #Collector efficiency\n",
      "\n",
      "#(v)\n",
      "#a.c resistance RL'=negative inverse of slope of the d.c load line\n",
      "slope=(IC_peak-IC_min)/(VCE_min-VCE_peak);                                  #Slope of he d.c load line, kilo mho\n",
      "RL_ac=-(1/slope)*1000;                                                     #a.c resistance, ohm\n",
      "n=sqrt(RL_ac/RL);                                                           #Transformer turn ratio\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"(i)   The approximate value of zero signal collector current=%dmA.\"%IC_zero_signal);\n",
      "print(\"(ii)  The zero signal base current=%.2fmA.\"%IB_zero_signal);\n",
      "print(\"(iii) The d.c input power= %dmW and a.c output power =%dmW.\"%(P_dc,P_ac));\n",
      "print(\"(iv)  The collector efficiency=%.1f%%.\"%collector_eff);\n",
      "print(\"(v)   The turn ratio of the transformer=%d.\"%n);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)   The approximate value of zero signal collector current=18mA.\n",
        "(ii)  The zero signal base current=0.18mA.\n",
        "(iii) The d.c input power= 315mW and a.c output power =106mW.\n",
        "(iv)  The collector efficiency=33.7%.\n",
        "(v)   The turn ratio of the transformer=3.\n"
       ]
      }
     ],
     "prompt_number": 26
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.14 : Page number 321-322\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "\n",
      "#Variable declaration\n",
      "RL=13.0;                        #Load resistance, ohm\n",
      "RL_reflected=325.0;             #Load resistance, when referred to primary, ohm\n",
      "VCC=20.0;                       #Supply voltage, V\n",
      "IC=58.0;                      #Quiscent value of collector current, mA\n",
      "\n",
      "#Calculation\n",
      "#(i)\n",
      "n=sqrt(RL_reflected/RL);                    #Transformer turn ratio\n",
      "\n",
      "#(ii)\n",
      "P_ac=(((IC/1000)**2)*RL_reflected/2)*1000;                   #A.C output power, mW\n",
      "\n",
      "#(iii)\n",
      "P_dc=VCC*IC;                                    #d.c input power, mW\n",
      "collector_eff=(P_ac/P_dc)*100;                        #Collector efficiency\n",
      "\n",
      "\n",
      "#Result\n",
      "print(\"(i)   Transformer turn ratio=%d.\"%n);\n",
      "print(\"(ii)  The a.c output power=%dmW.\"%P_ac);\n",
      "print(\"(iii) The collector efficiency=%d%%.\"%collector_eff);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)   Transformer turn ratio=5.\n",
        "(ii)  The a.c output power=546mW.\n",
        "(iii) The collector efficiency=47%.\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.15 : Page number 323\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "P_total=4.0;                #Total power dissipated by the power transistor, W\n",
      "T_j_max=90.0;               #Maximum junction temperature, degree celsius\n",
      "theta=10.0;                 #Thermal resistance, degree celsius per watt\n",
      "\n",
      "#Calculation\n",
      "#Since, Total power dissipation=half of(max. junc. temp. - ambient temp.)\n",
      "T_amb=T_j_max-(P_total*theta);                      #Ambient temperature, degree celsius\n",
      "\n",
      "#Result\n",
      "print(\"The ambient temperature=%d degree celsius.\"%T_amb);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The ambient temperature=50 degree celsius.\n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.16 : Page number 323-324\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "theta=300.0;                #Thermal resistance, degree celsius per watt\n",
      "T_j_max=90.0;               #Maximum junction temperature, degree celsius\n",
      "T_amb=30.0;                 #Ambient temperature, degree celsius\n",
      "\n",
      "#Calculation\n",
      "#(i) Without heat sink\n",
      "P_total=((T_j_max-T_amb)/theta)*1000;              #Maximum permissible power dissipation without sink, mW\n",
      "\n",
      "print(\"(i)The maximum permissible power dissipation without heat sink=%dmW.\"%P_total);\n",
      "\n",
      "#(ii) With heat sink\n",
      "theta=60.0;                                    #reduced thermal resistance, degree celsius per watt\n",
      "P_total=((T_j_max-T_amb)/theta)*1000;          #Maximum permissible power dissipation with heat sink, mW\n",
      "\n",
      "print(\"(ii)The maximum permissible power dissipation with heat sink=%dmW.\"%P_total);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)The maximum permissible power dissipation without heat sink=200mW.\n",
        "(ii)The maximum permissible power dissipation with heat sink=1000mW.\n"
       ]
      }
     ],
     "prompt_number": 28
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.17 : Page number 324\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "theta=20.0;                         #Thermal resistance, degree celsius per watt\n",
      "T_j_max=200.0;                      #Maximum junction temperature, degree celsius\n",
      "T_amb=25.0;                         #Ambient temperature, degree celsius\n",
      "VCE=4.0;                            #Collector-emitter voltage, V\n",
      "\n",
      "#Calculation\n",
      "P_total=(T_j_max-T_amb)/theta;          #Maximum permissible power dissipation, W\n",
      "\n",
      "#since, the max. power dissipation=VCE_max*IC_max,therefore\n",
      "IC_max=P_total/VCE;                                             #Maximum collector current, A\n",
      "\n",
      "print(\"The maximum collector current that the transistor can carry without destruction=%.2fA.\"%IC_max);\n",
      "\n",
      "#The ambient temperature rises\n",
      "T_amb=75.0;                     #The risen ambibent temperature, degree celsius\n",
      "P_total=(T_j_max-T_amb)/theta;          #Maximum permissible power dissipation, W\n",
      "IC_max=P_total/VCE;                                             #Maximum collector current, A\n",
      "\n",
      "print(\"The maximum collector current for the risen ambient temperature=%.2fA.\"%IC_max);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum collector current that the transistor can carry without destruction=2.19A.\n",
        "The maximum collector current for the risen ambient temperature=1.56A.\n"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.18 : Page  number 328-329\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "VCC=12.0;                   #Supply voltage, V\n",
      "RL=8.0;                     #Driving load, ohm\n",
      "\n",
      "#Calculation\n",
      "#(i)\n",
      "IC_sat=VCC/(2*RL);                  #Collector saturation current, A\n",
      "P_o_max=round(VCC*IC_sat*0.25,2);            #Maximum load power, W\n",
      "\n",
      "#(ii)\n",
      "P_dc=round(VCC*IC_sat/round(pi,2),2);                 #d.c input power, W\n",
      "\n",
      "#(iii)\n",
      "Collector_eff=(P_o_max/P_dc)*100;       #Collector efficiency\n",
      "\n",
      "#Result\n",
      "print(\"(i)   The maximum load power =%.2fW.\"%P_o_max);\n",
      "print(\"(ii)  The d.c input power=%.2fW.\"%P_dc);\n",
      "print(\"(iii) The collector efficiency=%.1f%%.\"%Collector_eff);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)   The maximum load power =2.25W.\n",
        "(ii)  The d.c input power=2.87W.\n",
        "(iii) The collector efficiency=78.4%.\n"
       ]
      }
     ],
     "prompt_number": 30
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.19 : Page number 329\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "P_T=10.0;                   #Power rating of each transistor, W\n",
      "max_eff=0.785;              #Maximum collector effciency\n",
      "\n",
      "#Calculation\n",
      "#Since, input power=max. a.c power + Power rating of transistor\n",
      "#And, max. efficiency=max. a.c power/input d.c power\n",
      "P_2T=2*P_T;                                   #Total power dissipation by two transistors\n",
      "P_o_max=(max_eff*P_2T)/(1-max_eff);           #Maximum output a.c power, W\n",
      "\n",
      "#result\n",
      "print(\"The maximum output power that can be obtained=%.2fW.\"%P_o_max);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum output power that can be obtained=73.02W.\n"
       ]
      }
     ],
     "prompt_number": 31
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.20 : Page number 329\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "eff=60.0/100;                   #Efficiency of the amplifier\n",
      "P_T=2.5;                        #Power dissipated by each transistor, W\n",
      "\n",
      "#Calculation\n",
      "#Since, input power=max. a.c power + Power rating of transistor\n",
      "#And, max. efficiency=max. a.c power/input d.c power\n",
      "P_2T=2*P_T;                        #Total power dissipated by both transistors, W\n",
      "P_ac=(eff*P_2T)/(1-eff);           #Output a.c power, W\n",
      "P_dc=P_ac+P_2T;                    #Input d.c power, W\n",
      "\n",
      "#Result\n",
      "print(\"The a.c output power= %.1fW.\"%P_ac);\n",
      "print(\"The d.c input power= %.1fW.\"%P_dc);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The a.c output power= 7.5W.\n",
        "The d.c input power= 12.5W.\n"
       ]
      }
     ],
     "prompt_number": 32
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.21 : Page number 329-330\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "VCC=10.0;               #Supply voltage, V\n",
      "RL=10.0;                #Load resistance, ohm\n",
      "\n",
      "#Calculation\n",
      "IC_sat=(VCC/(2*RL))*1000;          #Saturated collector current, mA\n",
      "VCE_off=VCC/2;                     #Collector-emitter voltage in off state, V\n",
      "\n",
      "#Result\n",
      "print(\"1st end point of a.c load line, IC(sat)=%dmA.\"%IC_sat);\n",
      "print(\"2nd end point of a.c load line, VCE(off)=%dV.\"%VCE_off);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "1st end point of a.c load line, IC(sat)=500mA.\n",
        "2nd end point of a.c load line, VCE(off)=5V.\n"
       ]
      }
     ],
     "prompt_number": 33
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}