1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
|
{
"metadata": {
"name": "",
"signature": "sha256:bf05b593414ed786160c113f8f3bb8234f72964f8f7ff07fb2368e2be036655e"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7 : Dielectric Materials and Insulation"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.1 Page No : 301"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given\n",
"NA = 6.023*10**23 # in mol**-1\n",
"d = 1.8 # g/cm3\n",
"Mat = 39.95 # in mol**-1\n",
"epsilon_o = 8.85*10**-12 # F/m2\n",
"alpha_e = 1.7*10**-40 # F*m2\n",
"\n",
"# Calculations and Results\n",
"N = NA*d/Mat # in cm**-3\n",
"N *= 10**6 # in m**-3\n",
"epsilon_r = 1+(N*alpha_e/epsilon_o)\n",
"print(\"Dielectric constant of solid Ar is {0:.4f}\".format(epsilon_r))\n",
"# using clausius-mossotti equation\n",
"epsilon_r = (1+(2*N*alpha_e/(3*epsilon_o)))/(1-(N*alpha_e/(3*epsilon_o)))\n",
"print(\"using clausius-mossotti equation, Dielectric constant of solid Ar is {0:.4f}\".format(epsilon_r))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Dielectric constant of solid Ar is 1.5213\n",
"using clausius-mossotti equation, Dielectric constant of solid Ar is 1.6309\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.2 Page No : 307"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given\n",
"N = 5*10**28 # in m**-3\n",
"e = 1.6*10**-19 # in coulombs\n",
"Z = 4.0\n",
"me = 9.1*10**-31 # in Kg\n",
"epsilon_o = 8.85*10**-12 # F/m2\n",
"epsilon_r = 11.9\n",
"\n",
"# Calculations and Results\n",
"# part(a)\n",
"alpha_e = (3*epsilon_o/N)*((epsilon_r-1)/(epsilon_r+2))\n",
"print(\"Electronic polarizability in F/m2 {0:.4g}\".format(alpha_e))\n",
"# part(b)\n",
"# let x=E_loc/E\n",
"x = (epsilon_r+2)/3.0\n",
"print(\"Local field is a factor of {0:.4f} greater than applied field\".format(x))\n",
"# part(c)\n",
"wo = math.sqrt(Z*e**2/(me*alpha_e))\n",
"fo = wo/(2*math.pi)\n",
"print(\"resonant frequency in Hz is {0:.4g}\".format(fo))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Electronic polarizability in F/m2 4.164e-40\n",
"Local field is a factor of 4.6333 greater than applied field\n",
"resonant frequency in Hz is 2.616e+15\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.3 Page No : 311"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given\n",
"# let epsilon=E\n",
"Eo = 8.85*10**-12 # in F/m\n",
"Ni = 1.43*10**28 # in m**-3\n",
"alpha_e_Cs = 3.35*10**-40 # F m2\n",
"alpha_e_Cl = 3.40*10**-40 # F m2\n",
"alpha_i = 6*10**-40 # F m2\n",
"\n",
"# Calculations and Results\n",
"# (Er-1)/(Er+2)=(1/(3*E0))*(Ni*alpha_e(Cs+)+Ni*alpha_e(Cl-)+Ni*alpha_i)\n",
"# let x=(1/(3*E0))*(Ni*alpha_e(Cs+)+Ni*alpha_e(Cl-)+Ni*alpha_i)\n",
"# after few mathematical steps we get\n",
"# Er=(2*x+1)/(1-x)\n",
"x = (1.0/(3*Eo))*(Ni*alpha_e_Cs+Ni*alpha_e_Cl+Ni*alpha_i)\n",
"Er = (2*x+1)/(1-x)\n",
"print(\"Dielectric constant at low frequency is\")\n",
"# similarly\n",
"# let y=(1/(3*E0))*(Ni*alpha_e(Cs+)+Ni*alpha_e(Cl-))\n",
"# after few mathematical steps we get\n",
"# Erop=(2*x+1)/(1-x)\n",
"y = (1.0/(3*Eo))*(Ni*alpha_e_Cs+Ni*alpha_e_Cl)\n",
"Erop = (2*y+1)/(1-y)\n",
"print(\"Dielectric constant at optical frequency is {0:.4f}\".format(Erop))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Dielectric constant at low frequency is\n",
"Dielectric constant at optical frequency is 2.7137\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.6 Page No : 315"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"# Given\n",
"# power dissipated at a given voltage per unit capacitance depends only on w*math.tan(delta)\n",
"# at f=60 #in Hz.\n",
"f = 60.0 # in Hz.\n",
"w = 2*math.pi*f\n",
"# let x=math.tan(delta)\n",
"x_PC = 9*10**-4 # Ploy-carbonate\n",
"x_SR = 2.25*10**-2 # Silicone rubber\n",
"x_E = 4.7*10**-2 # Epoxy with mineral filler\n",
"\n",
"# Calculations and Results\n",
"p_PC = w*x_PC\n",
"p_SR = w*x_SR\n",
"p_E = w*x_E\n",
"a = min(p_PC, p_SR, p_E)\n",
"print(\"The minimum w*math.radians(math.tan(delta) is {0:.4f} which corresponds to polycarbonate\".format(a))\n",
"print(\"Hence the lowest power dissipation per unit capacitance at a given voltage \"\n",
" \"corresponds to polycarbonate at 60Hz\")\n",
"\n",
"# Given\n",
"# at f=1 # in MHz.\n",
"f = 10**6 # in Hz.\n",
"w = 2*math.pi*f\n",
"# let x=math.tan(delta)\n",
"x_PC = 1*10**-2 # Ploy-carbonate\n",
"x_SR = 4*10**-3 # Silicone rubber\n",
"x_E = 3*10**-2 # Epoxy with mineral filler\n",
"\n",
"# Calculations and Results\n",
"p_PC = w*x_PC\n",
"p_SR = w*x_SR\n",
"p_E = w*x_E\n",
"a = min(p_PC, p_SR, p_E)\n",
"print(\"The minimum w*math.radians(math.tan(delta) is {0:.4f} which corresponds to Silicone rubber\".format(a))\n",
"print(\"Hence, the lowest power dissipation per unit capacitance at a given \"\n",
" \"voltage corresponds to Silicone rubber at 1MHz\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum w*math.radians(math.tan(delta) is 0.3393 which corresponds to polycarbonate\n",
"Hence the lowest power dissipation per unit capacitance at a given voltage corresponds to polycarbonate at 60Hz\n",
"The minimum w*math.radians(math.tan(delta) is 25132.7412 which corresponds to Silicone rubber\n",
"Hence, the lowest power dissipation per unit capacitance at a given voltage corresponds to Silicone rubber at 1MHz\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.7 Page No : 320"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given\n",
"# at 60 Hz\n",
"f = 60.0 # Hz\n",
"E = 100*10**3*10**2 # in V/m\n",
"# values taken from table 7.3\n",
"epsilon_o = 8.85*10**-12 # in F/m\n",
"epsilon_r_HLPE = 2.3\n",
"epsilon_r_Alumina = 8.5\n",
"# let x=math.tan(delta)\n",
"x_HLPE = 3*10**-4\n",
"x_Alumina = 1*10**-3\n",
"\n",
"# Calculations and Results\n",
"W_vol_HLPE = 2*math.pi*f*E**2*epsilon_o*epsilon_r_HLPE*x_HLPE # in W/m3\n",
"W_vol_HLPE /= 10**3 # in mW/cm3\n",
"print(\"Heat dissipated per unit volume of HLPE at 60 Hz in mW/cm3 is {0:.4f}\".format(W_vol_HLPE))\n",
"W_vol_Alumina = 2*math.pi*f*E**2*epsilon_o*epsilon_r_Alumina*x_Alumina\n",
"W_vol_Alumina /= 10**3 # in mW/cm3\n",
"print(\"Heat dissipated per unit volume of Alumina at 60 Hz in mW/cm3 is {0:.4f}\".format(W_vol_Alumina))\n",
"\n",
"# Given\n",
"# at 1 MHz\n",
"f = 10**6 # Hz\n",
"x_HLPE = 4*10**-4\n",
"x_Alumina = 1*10**-3\n",
"\n",
"# Calculations and Results\n",
"W_vol_HLPE = 2*math.pi*f*E**2*epsilon_o*epsilon_r_HLPE*x_HLPE # in W/m3\n",
"W_vol_HLPE /= 10**6 # in W/cm3\n",
"print(\"Heat dissipated per unit volume of HLPE at 1 MHz in mW/cm3 is {0:.4f}\".format(W_vol_HLPE))\n",
"W_vol_Alumina = 2*math.pi*f*E**2*epsilon_o*epsilon_r_Alumina*x_Alumina\n",
"W_vol_Alumina /= 10**6 # in W/cm3\n",
"print(\"Heat dissipated per unit volume of Alumina at 1 MHz in mW/cm3 is {0:.4f}\".format(W_vol_Alumina))\n",
"print(\"The heats at 60Hz are small comparing to heats at 1MHz\")\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat dissipated per unit volume of HLPE at 60 Hz in mW/cm3 is 0.2302\n",
"Heat dissipated per unit volume of Alumina at 60 Hz in mW/cm3 is 2.8359\n",
"Heat dissipated per unit volume of HLPE at 1 MHz in mW/cm3 is 5.1158\n",
"Heat dissipated per unit volume of Alumina at 1 MHz in mW/cm3 is 47.2653\n",
"The heats at 60Hz are small comparing to heats at 1MHz\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.10 Page No : 324"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given\n",
"# part(C)\n",
"d = 0.5 # cm\n",
"a = d/2.0 # in cm\n",
"t = 0.5 # in cm\n",
"Ebr_X = 217.0 # in kV/cm from table 7.5\n",
"Ebr_S = 158.0 # in kV/cm from table 7.5\n",
"\n",
"# Calculations and Results\n",
"b = a+t\n",
"Vbr_X = Ebr_X*a*math.log(b/a)\n",
"print(\"breakdown voltage of XLPE in kV is {0:.4f}\".format(Vbr_X))\n",
"Vbr_S = Ebr_S*a*math.log(b/a)\n",
"print(\"breakdown voltage of Silicone rubber in kV is {0:.4f}\".format(Vbr_S))\n",
"# part(d)\n",
"# Given\n",
"# letE=epsiolon\n",
"Er_X = 2.3 # for XLPE\n",
"Er_S = 3.7 # for Silicone rubber\n",
"# Eair_br=Ebr\n",
"Eair_br_X = 100.0 # in kV/cm\n",
"Eair_br_S = 100.0 # in kV/cm\n",
"\n",
"# Calculations and Results\n",
"# Vair_br=Eair_br*a*math.log(b/a)/Er\n",
"Vair_br_X = Eair_br_X*a*math.log(b/a)/Er_X\n",
"print(\"Voltage for partial discharge in a microvoid for XLPE in kV is {0:.4f}\".format(Vair_br_X))\n",
"Vair_br_S = Eair_br_S*a*math.log(b/a)/Er_S\n",
"print(\"Voltage for partial discharge in a microvoid for Silicone rubber in kV is {0:.4f}\".format(Vair_br_S))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"breakdown voltage of XLPE in kV is 59.5997\n",
"breakdown voltage of Silicone rubber in kV is 43.3952\n",
"Voltage for partial discharge in a microvoid for XLPE in kV is 11.9414\n",
"Voltage for partial discharge in a microvoid for Silicone rubber in kV is 7.4231\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.11 Page No : 327"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given\n",
"# letE=epsiolon\n",
"Er_100c = 2.69\n",
"Er_25c = 2.60\n",
"f = 1*10**3 # in Hz\n",
"w = 2*math.pi*f\n",
"C_25c = 560*10**-12 # in Farads\n",
"# Gp=w*C*math.tan(delta)\n",
"# let x=math.tan(delta)=0.002\n",
"x = 0.002\n",
"\n",
"# Calculations and Results\n",
"Gp = w*C_25c*x\n",
"print(\"Equivalent parallel conductance at 25 degree celsius in ohm**-1 is {0:.4g}\".format(Gp))\n",
"\n",
"# Given\n",
"# at 100 c\n",
"x = 0.01\n",
"\n",
"# Calculations and Results\n",
"C_100c = C_25c*Er_100c/Er_25c\n",
"Gp = w*C_100c*x\n",
"print(\"Equivalent parallel conductance at 100 degree celsius in ohm**-1 is {0:.4g}\".format(Gp))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Equivalent parallel conductance at 25 degree celsius in ohm**-1 is 7.037e-09\n",
"Equivalent parallel conductance at 100 degree celsius in ohm**-1 is 3.64e-08\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.12 Page No : 331"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given\n",
"Eo = 8.85*10**-12 # F/m2\n",
"Er = 1000.0\n",
"D = 3*10**-3 # in m\n",
"V = 5000.0 # in V\n",
"d = 200*10**-12 # in m/V\n",
"L = 10*10**-3 # in mm\n",
"\n",
"# Calculations and Results\n",
"A = math.pi*(D/2.0)**2\n",
"F = Eo*Er*A*V/(d*L)\n",
"print(\"Force required to spark the gap in Newton is {0:.4f}\".format(F))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Force required to spark the gap in Newton is 156.3924\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.13 Page No : 333"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given\n",
"fs = 1.0 # in MHz\n",
"k = 0.1\n",
"\n",
"# Calculations and Results\n",
"fa = fs/(math.sqrt(1-k**2))\n",
"print(\"fa value in MHz for given fs is {0:.4f}\".format(fa))\n",
"print(\"thus fa-fs is only {0:.4f} kHz (which means they are very close)\".format((fa-fs)*10**3))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"fa value in MHz for given fs is 1.0050\n",
"thus fa-fs is only 5.0378 kHz (which means they are very close)\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.14 Page No : 334"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given\n",
"Co = 5.0 # in pF\n",
"fa = 1.0025 # in MHz\n",
"fs = 1.0 # in MHz\n",
"R = 20.0 # in ohms\n",
"\n",
"# Calculations and Results\n",
"C = Co*((fa/fs)**2-1)\n",
"print(\"Capacitance value in the equivalent circuit of the crystal in pF is {0:.4f}\".format(C))\n",
"L = 1/(C*(2*math.pi*fs)**2)\n",
"print(\"Inductance value in the equivalent circuit of the crystal in Henry is {0:.4f}\".format(L))\n",
"\n",
"# Given\n",
"fs *= 10**6 # in Hz\n",
"C *= 10**-12 # in F\n",
"\n",
"# Calculations and Results\n",
"Q = 1.0/(2*math.pi*fs*R*C)\n",
"print(\"Quality factor of the crystal is {0:.4g}\".format(Q))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Capacitance value in the equivalent circuit of the crystal in pF is 0.0250\n",
"Inductance value in the equivalent circuit of the crystal in Henry is 1.0119\n",
"Quality factor of the crystal is 3.179e+05\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.15 Page No : 340"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given\n",
"P = 380*10**-6 # in C/m2/K\n",
"c = 380.0 # in J/Kg/K\n",
"# let epsilon=E\n",
"Eo = 8.85*10**-12 # in F/m\n",
"Er = 290.0\n",
"rho = 7000.0 # in Kg/m3\n",
"delta_V = 0.001 # in V\n",
"delta_t = 0.2 # in seconds\n",
"\n",
"# Calculations and Results\n",
"I = (P/(rho*c*Eo*Er))**-1*delta_V/delta_t\n",
"print(\"Minimum radiation intensity that can be measured in W/m2 is {0:.4f}\".format(I))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Minimum radiation intensity that can be measured in W/m2 is 0.0898\n"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|