1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
|
{
"metadata": {
"name": "",
"signature": "sha256:a1c57dcea36d3741ad4c663237ed74b9446d043dd515ecab430a8c5aaad770ab"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3 : Elementary Quantum Physics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1 Page No : 101"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given\n",
"lambda_val = 450*10**-9 # in nm\n",
"h = 6.6*10**-34 # in J s\n",
"e = 1.6*10**-19 # in coulombs\n",
"c = 3*10**8 # in m/s\n",
"\n",
"# Calculations and Results\n",
"E_ph = h*c/lambda_val # in J\n",
"E_ph /= e # in eV\n",
"print(\" Energy of blue photon in eV is {0:.4f}\".format(E_ph))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Energy of blue photon in eV is 2.7500\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2 Page No : 103"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given\n",
"lambda_o = 522*10**-9 # in nm\n",
"lambda_val = 250*10**-9 # in nm\n",
"h = 6.6*10**-34 # in J s\n",
"c = 3*10**8 # in m/s\n",
"e = 1.6*10**-19 # in coulombs\n",
"I = 20*10**-3 # in W/cm2\n",
"I = 20*10**-3*10**4 # in J/s/m2\n",
"\n",
"# Calculations and Results\n",
"# part(a)\n",
"phi = h*c/(lambda_o*e) # in eV\n",
"print(\"Work function of sodium in eV is {0:.4f}\".format(phi))\n",
"KE = h*c/(lambda_val*e)-phi\n",
"print(\"Kinetic energy of photo emitted electrons in eV is {0:.4f}\".format(KE))\n",
"J = (e*I*lambda_val)/(h*c)\n",
"print(\"Photoelectric current density in A/m2 is {0:.4f}\".format(J))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Work function of sodium in eV is 2.3707\n",
"Kinetic energy of photo emitted electrons in eV is 2.5793\n",
"Photoelectric current density in A/m2 is 40.4040\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4 Page No : 104"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given\n",
"theta = 15.2 # in degree\n",
"d = 0.234 # in nm\n",
"V = 100.0 # in V\n",
"\n",
"# Calculations and Results\n",
"lambda_val = 2*d*math.sin(math.radians(theta)) # Braggs condition\n",
"print(\"Wavelength of electron in nm is {0:.4f}\".format(lambda_val))\n",
"lambda_val = 1.226/math.sqrt(V) # debroglie wavelength in nm\n",
"print(\"de Broglie Wavelength of electron in nm is {0:.4f}\".format(lambda_val))\n",
"print(\"de Broglie Wavelength is in excellent agreement with that determined from Braggs condition\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Wavelength of electron in nm is 0.1227\n",
"de Broglie Wavelength of electron in nm is 0.1226\n",
"de Broglie Wavelength is in excellent agreement with that determined from Braggs condition\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5 Page No : 105"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given\n",
"h = 6.6*10**-34 # in J s\n",
"c = 3*10**8 # in m/s\n",
"n = 1.0\n",
"m = 9.1*10**-31 # in Kg\n",
"a = 0.1*10**-9 # in m\n",
"e = 1.6*10**-19 # in coulombs\n",
"\n",
"# Calculations and Results\n",
"E1 = (h**2*n**2)/(8*m*a**2)\n",
"E1 /= e # in eV\n",
"print(\"Ground Energy of the electron in J is {0:.4f}\".format(E1))\n",
"# part(b)\n",
"n = 3.0\n",
"E3 = E1*n**2\n",
"print(\"Energy required to put the electrons in third energy level in eV is {0:.4f}\".format(E3))\n",
"E = E3-E1\n",
"print(\"Energy required to take the electron from E1 to E3 in eV is {0:.4f}\".format(E))\n",
"lambda_val = h*c/(E*e)\n",
"print(\"wavelength of the required photon in nm is {0:.4g}\".format(lambda_val))\n",
"print(\"which is an X-ray photon\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Ground Energy of the electron in J is 37.3970\n",
"Energy required to put the electrons in third energy level in eV is 336.5728\n",
"Energy required to take the electron from E1 to E3 in eV is 299.1758\n",
"wavelength of the required photon in nm is 4.136e-09\n",
"which is an X-ray photon\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6 Page No : 110"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given\n",
"h = 6.6*10**-34 # in J s\n",
"c = 3*10**8 # in m/s\n",
"n = 1.0\n",
"m = 0.1 # in Kg\n",
"a = 1.0 # in m\n",
"\n",
"# Calculations and Results\n",
"E1 = (h**2*n**2)/(8*m*a**2)\n",
"v = math.sqrt(2*E1/m)\n",
"print(\"Minimum speed of the object in m/s {0:.4g}\".format(v))\n",
"# calculation of quantum number n\n",
"v = 1.0 # in m/s\n",
"E_n = m*v**2/2.0\n",
"n = math.sqrt((8*m*a**2*E_n)/h**2)\n",
"print(\"Quantum number if the object is moving with a minimum speed of 1m/s is {0:.4g}\".format(n))\n",
"delta_E = (h**2/(8*m*a**2))*(2*n+1) # delta_E=E_n+1-En\n",
"print(\"Separation of energy levels of the object moving with speed of 1 m/s in Joules is {0:.4g}\".format(delta_E))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Minimum speed of the object in m/s 3.3e-33\n",
"Quantum number if the object is moving with a minimum speed of 1m/s is 3.03e+32\n",
"Separation of energy levels of the object moving with speed of 1 m/s in Joules is 3.3e-34\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.8 Page No : 114"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given\n",
"h_bar = 1.054*10**-34 # in J s\n",
"delta_x = 0.1*10**-9 # in m\n",
"m_e = 9.1*10**-31 # in Kg\n",
"\n",
"# Calculations and Results\n",
"delta_Px = h_bar/delta_x\n",
"print(\"uncertainty in momentum in Kg m/s is {0:.4g}\".format(delta_Px))\n",
"delta_v = delta_Px/m_e\n",
"KE = delta_Px**2/(2*m_e)\n",
"print(\"Uncertainty in Kinetic Energy in J is {0:.4g}\".format(KE))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"uncertainty in momentum in Kg m/s is 1.054e-24\n",
"Uncertainty in Kinetic Energy in J is 6.104e-19\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.9 Page No : 115"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given\n",
"h_bar = 1.054*10**-34 # in J s\n",
"delta_x = 1.0 # in m\n",
"m = 0.1 # in Kg\n",
"\n",
"# Calculations and Results\n",
"delta_Px = h_bar/delta_x\n",
"delta_v = delta_Px/m\n",
"print(\"minimum uncertainty in the velocity in m/s is {0:.4g}\".format(delta_v))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"minimum uncertainty in the velocity in m/s is 1.054e-33\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.10 Page No : 121"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given\n",
"h_bar = 1.054*10**-34 # in J s\n",
"m = 9.1*10**-31 # in Kg\n",
"e = 1.6*10**-19 # in coulombs\n",
"Vo = 10.0 # in ev\n",
"Vo *= e # in J\n",
"E = 7.0 # in eV\n",
"E *= e # in J\n",
"a = 5*10**-9 # in m\n",
"\n",
"# Calculations and Results\n",
"alpha = math.sqrt(2*m*(Vo-E)/h_bar**2)\n",
"To = 16*E*(Vo-E)/Vo**2\n",
"T = To*math.exp(-2*alpha*a)\n",
"print(\"Transmission coefficient of conduction electrons in copper is {0:.4g}\".format(T))\n",
"a = 1*10**-9 # in m\n",
"T = To*math.exp(-2*alpha*a)\n",
"print(\"Transmission coefficient if the oxide barrier is 1 nm is {0:.4g}\".format(T))\n",
"# slight change in the answer due to approximations in alpha value\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Transmission coefficient of conduction electrons in copper is 1.033e-38\n",
"Transmission coefficient if the oxide barrier is 1 nm is 6.666e-08\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.11 Page No : 122"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given\n",
"h_bar = 1.054*10**-34 # in J s\n",
"m = 100.0 # in Kg\n",
"g = 10.0 # in m/s2\n",
"h = 10.0 # in m\n",
"h1 = 15.0 # in m\n",
"a = 10.0 # in m\n",
"E = m*g*h # total energy of carriage\n",
"Vo = m*g*h1 # PE required to reach the peak\n",
"\n",
"# Calculations and Results\n",
"alpha = math.sqrt(2*m*(Vo-E)/h_bar**2)\n",
"To = 16*E*(Vo-E)/Vo**2\n",
"T = To*math.exp(-2*alpha*a)\n",
"print(\"Transmission probability is {0:.4g}\".format(T))\n",
"h_bar = 10*10**3 # Js\n",
"alpha = math.sqrt(2*m*(Vo-E)/h_bar**2)\n",
"D = Vo**2/(4*E*(Vo-E))\n",
"T = (1+(math.sinh(alpha*a))**2)**-1\n",
"print(\"transmission probability in a universe where h_bar is 10KJs is {0:.4g}\".format(T))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Transmission probability is 0\n",
"transmission probability in a universe where h_bar is 10KJs is 0.42\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.12 Page No : 124"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given\n",
"x = 9\n",
"\n",
"# Calculation and Results\n",
"for n1 in range(1, x+1):\n",
" for n2 in range(1, x+1):\n",
" for n3 in range(1, x+1):\n",
" y = n1**2+n2**2+n3**2 # let y=N**2=n1**2+n2**2+n3**2\n",
" if y == 41:\n",
" print('{0}\\t{1}\\t{2}'.format(n1, n2, n3))\n",
"print(\"Thus there are nine possible states\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"1\t2\t6\n",
"1\t6\t2\n",
"2\t1\t6\n",
"2\t6\t1\n",
"3\t4\t4\n",
"4\t3\t4\n",
"4\t4\t3\n",
"6\t1\t2\n",
"6\t2\t1\n",
"Thus there are nine possible states\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.13 Page No : 126"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given\n",
"h = 6.6*10**-34 # in J s\n",
"c = 3*10**8 # in m/s\n",
"m = 9.1*10**-31 # in Kg\n",
"e = 1.6*10**-19 # in coulombs\n",
"v = 2.1*10**6 # in m/s\n",
"E = m*v**2/2.0 # in J\n",
"E /= e # in eV\n",
"E1 = -13.6 # in eV\n",
"\n",
"# Calculations and Results\n",
"# change in the energy is E=En-E1\n",
"n = math.sqrt(-13.6/(E+E1))\n",
"print(\" the electron gets excited to {0:.4f} level\".format(n))\n",
"n = 3.0\n",
"E3 = -13.6/n**2\n",
"delta_E31 = E3-E1 # in eV\n",
"delta_E31 *= e # in J\n",
"lambda_31 = h*c/delta_E31\n",
"print(\"wavelength of emitted radiation from n=3 to n=1 in nm is {0:.4f}\".format(lambda_31*10**9))\n",
"# Another probability is transition fromm n=3 to n=2\n",
"n = 2.0\n",
"E2 = -13.6/n**2\n",
"delta_E32 = E3-E2 # in eV\n",
"delta_E32 *= e # in J\n",
"lambda_32 = h*c/delta_E32\n",
"print(\"wavelength of emitted radiation from n=3 to n=2 in nm is {0:.4f}\".format(lambda_32*10**9))\n",
"# Another probability is transition fromm n=2 to n=1\n",
"E2 = -13.6/n**2\n",
"delta_E21 = E2-E1 # in eV\n",
"delta_E21 *= e # in J\n",
"lambda_21 = h*c/delta_E21\n",
"print(\"wavelength of emitted radiation from n=2 to n=1 in nm is {0:.4f}\".format(lambda_21*10**9))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" the electron gets excited to 3.5835 level\n",
"wavelength of emitted radiation from n=3 to n=1 in nm is 102.3667\n",
"wavelength of emitted radiation from n=3 to n=2 in nm is 655.1471\n",
"wavelength of emitted radiation from n=2 to n=1 in nm is 121.3235\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.14 Page No : 127"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given\n",
"Z = 2.0\n",
"n = 1.0\n",
"\n",
"# Calculations and Results\n",
"E1 = -Z**2*13.6/n**2\n",
"E1 = abs(E1)\n",
"print(\"Energy required to ionize He+ further in eV is {0:.4f}\".format(E1))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Energy required to ionize He+ further in eV is 54.4000\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.15 Page No : 130"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given\n",
"Z = 1.0\n",
"n1 = 2.0\n",
"n2 = 3.0\n",
"R_inf = 1.0974*10**7 # in m**-1\n",
"\n",
"# Calculations and Results\n",
"# Let x=1/lambda\n",
"x = R_inf*Z**2*((1/n1**2)-(1/n2**2))\n",
"lambda_val = 1.0/x\n",
"print(\"Wavelength of first spectral line in Angstroms is {0:.4f}\".format(lambda_val*10**10))\n",
"n1 = 2.0\n",
"n2 = 4.0\n",
"x = R_inf*Z**2*((1/n1**2)-(1/n2**2))\n",
"lambda_val = 1.0/x\n",
"print(\"Wavelength of second spectral line in Angstroms is {0:.4f}\".format(lambda_val*10**10))\n",
"print(\"These spectral lines correspond to H_alpha and H_beta lines of Hydrogen\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Wavelength of first spectral line in Angstroms is 6560.9623\n",
"Wavelength of second spectral line in Angstroms is 4859.9721\n",
"These spectral lines correspond to H_alpha and H_beta lines of Hydrogen\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.16 Page No : 133"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given\n",
"h = 6.6*10**-34 # in J s\n",
"e = 1.6*10**-19 # in coulombs\n",
"E1 = 13.6 # in eV\n",
"E1 *= e # in J\n",
"Z = 1.0\n",
"n1 = 109.0\n",
"n2 = 110.0\n",
"ao = 52.918*10**-12 # in m\n",
"\n",
"# Calculations and Results\n",
"v = Z**2*E1*((1.0/n1**2)-(1.0/n2**2))/h\n",
"print(\"Frequency of radiation in MHz is {0:.4f}\".format(v*10**-6))\n",
"print(\"The frequency of radiation in the transition from n1=109 to n2=110 is same as that \"\n",
" \"of the detected frequency .Hence, the radiation comes from excited hydrogen atoms in\"\n",
" \" the give transition\")\n",
"x = 2*n2**2*ao\n",
"print(\"The size of the atom in micro meter is {0:.4f}\".format(x*10**6))\n",
"# slight difference in the answer is due to approximations\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Frequency of radiation in MHz is 5022.5088\n",
"The frequency of radiation in the transition from n1=109 to n2=110 is same as that of the detected frequency .Hence, the radiation comes from excited hydrogen atoms in the give transition\n",
"The size of the atom in micro meter is 1.2806\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.20 Page No : 139"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given\n",
"P_out = 2.5*10**-3 # in Watt\n",
"I = 5*10**-3 # in Amp\n",
"V = 2000.0 # in volts\n",
"\n",
"# Calculations and Results\n",
"P_in = V*I\n",
"E = (P_out/P_in)*100\n",
"print(\"Efficiency of the laser in % is {0:.4f}\".format(E))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Efficiency of the laser in % is 0.0250\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.21 Page No : 142"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given\n",
"lambda_o = 632.8*10**-9 # in m\n",
"c = 3*10**8 # in m/s\n",
"T = 127.0 # in degree celsius\n",
"T += 273.0 # in Kelvin\n",
"m_A = 20.2*10**-3 # in Kg/mol\n",
"NA = 6.023*10**23 # mol**-1\n",
"k = 1.38*10**-23 # in J/K\n",
"\n",
"# Calculations and Results\n",
"m = m_A/NA # in Kg\n",
"vx = math.sqrt(k*T/m)\n",
"vo = c/lambda_o\n",
"delta_v = 2*vo*vx/c\n",
"print(\"delta_v in GHz is {0:.4g}\".format(delta_v))\n",
"delta_lambda = delta_v*(-lambda_o/vo)\n",
"print(\"delta_lambda in meters is {0:.4g}\".format(abs(delta_lambda)))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"delta_v in GHz is 1.282e+09\n",
"delta_lambda in meters is 1.711e-12\n"
]
}
],
"prompt_number": 19
}
],
"metadata": {}
}
]
}
|