1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
{
"metadata": {
"name": "",
"signature": "sha256:60c2fa50959c5a4dba9df5cf01a73aa3b32e4e232661901abd9e03f25b058fca"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter3-Weight\u2013Volume Relationships"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg 60"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#evaluvate moist and dry density and void ratio and porosity and degree of saturation and volume of water in soil sample\n",
"##initialisation of variables\n",
"V= 1.2 ##m**3\n",
"M= 2350. ##Kg\n",
"w= 0.086\n",
"G= 2.71\n",
"W= 1000. ##kg/m**3\n",
"##calculations\n",
"R= M/V\n",
"D= M/((1.+w)*V)\n",
"e= (G*W/D)-1.\n",
"n= e/(e+1.)\n",
"S= (w*G/e)*100.\n",
"v= (M-(M/(1.+w)))/W\n",
"##results\n",
"print'%s %.1f %s'% ('moist density = ',R,' kg/m^3 ')\n",
"print'%s %.1f %s'% ('dry density = ',D,' kg/m^3 ')\n",
"print'%s %.3f %s'% ('void ratio = ',e,' ')\n",
"print'%s %.3f %s'% ('porosity = ',n,'')\n",
"print'%s %.3f %s'% ('Degree of saturation = ',S,' ')\n",
"print'%s %.3f %s'% ('volume of water in soil sample = ',v,' m^3 ')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"moist density = 1958.3 kg/m^3 \n",
"dry density = 1803.3 kg/m^3 \n",
"void ratio = 0.503 \n",
"porosity = 0.335 \n",
"Degree of saturation = 46.349 \n",
"volume of water in soil sample = 0.186 m^3 \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg 63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calcualte mass of water to be added for full saturation\n",
"##initialisation of variables\n",
"n= 0.4\n",
"G= 2.68\n",
"w= 0.12\n",
"R= 1000. ##kg/m**3\n",
"V= 10. ##m**3\n",
"##calculations\n",
"d= G*R*(1.-n)*(1.+w)\n",
"s= ((1.-n)*G+n)*R\n",
"M= s-d\n",
"m= M*V\n",
"##results\n",
"print'%s %.1f %s'%('mass of water to be added for full saturation = ',m,' kg ')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"mass of water to be added for full saturation = 2070.4 kg \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculatesatuarated unit weight and specific gravity and void ratio \n",
"##initialisation of variables\n",
"d= 16.19 ##kN/m**3\n",
"w= 0.23\n",
"W= 9.81 ##kN/m**3\n",
"##calculations\n",
"R= d*(1.+w)\n",
"G= d/(W-d*w)\n",
"e= w*G\n",
"##results\n",
"print'%s %.2f %s'%('satuarated unit weight = ',R,' kN/m^3 ')\n",
"print '%s %.2f %s'%('specific gravity = ',G,' ')\n",
"print'%s %.2f %s'% ('void ratio = ',e,' ')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"satuarated unit weight = 19.91 kN/m^3 \n",
"specific gravity = 2.66 \n",
"void ratio = 0.61 \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg66"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate relative density of compaction in percentage\n",
"##initialisation of variables\n",
"G= 2.68\n",
"w= 0.12\n",
"d= 1794.4 ##kg/m**3\n",
"W= 1000. ##kg/m**3\n",
"emax= 0.75\n",
"emin= 0.4\n",
"##calculation\n",
"e= (G*W*(1.+w)/d)-1.\n",
"D= ((emax-e)/(emax-emin))*100.\n",
"##results\n",
"print'%s %.1f %s'% ('relative density of compaction in percentage = ',D,' ')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"relative density of compaction in percentage = 22.1 \n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|