1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
{
"metadata": {
"name": "",
"signature": "sha256:f8ccaea2f8e2185eadf01a8580109480d61ddd5c9965256b8487bceaf5d3f50f"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter16-Soil-Bearing Capacity for Shallow Foundations"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg587"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine the gross allowable load per unit area (qall) that the foundation can carry.\n",
"import math\n",
"c=20.\n",
"## from table 16.1\n",
"Nc=17.69\n",
"Nq=7.44\n",
"Ng=3.64\n",
"\n",
"Df=3.\n",
"G=110.\n",
"q=G*Df\n",
"\n",
"C=200.\n",
"B=4.\n",
"\n",
"Qu= C*Nc+q*Nq+G*B*Ng/2.\n",
"\n",
"Fs=3.\n",
"Qall=Qu/Fs\n",
"print'%s %.1f %s'%('Qa = ',Qall,' lb/ft^2')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Qa = 2264.7 lb/ft^2\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg588"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#determine the size of the footing\u2014that is, the size of B.\n",
"G=18.15\n",
"qa=30000.*9.81/1000.\n",
"\n",
"Nc=57.75\n",
"Nq=41.44\n",
"Ng=45.41\n",
"C=0.\n",
"q=G*1.\n",
"B=1.\n",
"(1.3*C*Nc+q*Nq+0.4*G*B*Ng)*B**2/3. == qa\n",
"B= math.sqrt(294.3/(250.7+109.9))\n",
"print'%s %.1f %s'%(' B = ',B,' m')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" B = 0.9 m\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg595"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Determine the safe gross load (factor of safety of 3) that the footing can carry\n",
"B=1.2\n",
"L=1.2\n",
"c=32.\n",
"C=0.\n",
"Df=1.\n",
"G=16.\n",
"Nq=23.18\n",
"Ng=22.02\n",
"Nc=1.\n",
"Lqs=1.+0.1*B*(math.tan(61./57.3)**2.)/L\n",
"Lgs=Lqs\n",
"Lqd=1.+0.1*Df*math.tan(61./57.3)/B\n",
"Lgd=Lqd\n",
"Lcs=1.\n",
"Lcd=1.\n",
"Gs=19.5\n",
"q=0.5*G+0.5*(Gs-9.81)\n",
"Qu= C*Lcs*Lcd*Nc+q*Lqs*Lqd*Nq+(Gs-9.81)*Lgs*Lgd*B*Ng/2.\n",
"Qa=Qu/3.\n",
"Q=Qa*B**2.\n",
"print'%s %.1f %s'%('the gross load = ',Q,' kN')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the gross load = 311.6 kN\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg601"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#Determine the magnitude of the gross ultimate load applied eccentrically for bearing capacity failure in soil.\n",
"e=0.1\n",
"B=1.\n",
"X=B-2.*e\n",
"Y=1.5\n",
"B1=0.8\n",
"L1=1.5\n",
"c=30.\n",
"Df=1.\n",
"Nq=18.4\n",
"Ng=15.668\n",
"q=1.*18.\n",
"G=18.\n",
"Lqs=1.+e*(B1/L1)*math.tan(60./57.3)**2.\n",
"Lgs=Lqs\n",
"Lqd=1.+e*(Df/B1)*math.tan(60./57.3)\n",
"Lgd=Lqd\n",
"qu=q*Lqs*Lqd*Nq+Lgs*Lgd*G*B1*Ng/2.\n",
"Qu=qu*B1*L1\n",
"print'%s %.1f %s'%('The magnitude of the gross ultimate load =',Qu,' kN')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The magnitude of the gross ultimate load = 751.8 kN\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg601"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine the gross ultimate load per unit length that the foundation can carry.\n",
"import math\n",
"B=1.5\n",
"Df=0.75\n",
"e=0.1*B\n",
"G=17.5\n",
"c=30.\n",
"C=0.\n",
"q=G*Df\n",
"Nq=18.4\n",
"Ng=15.668\n",
"Lqd=1.+0.1*(Df/B)*math.tan(60./57.3)\n",
"Lgd=Lqd\n",
"Quc=q*Nq*Lqd+Lgd*B*Ng/2.\n",
"k=0.8\n",
"a=1.754\n",
"Qua=Quc*(1.-a*(e/B)**k)\n",
"print'%s %.1f %s'%('The gross ultimate load per unit length = ',Qua,' kN')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The gross ultimate load per unit length = 198.7 kN\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg606"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#Estimate the ultimate bearing capacity of a circular footing with a diameter of 1.5 m. The soil is sandy.\n",
"Qup=280.\n",
"Bp=0.7 ## in m\n",
"Bf=1.5\n",
"Quf=Qup*Bf/Bp\n",
"print'%s %.1f %s'%('The ultimate bearing capacity = ',Quf,' kN/m^2')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The ultimate bearing capacity = 600.0 kN/m^2\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg606"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the value of Cv\n",
"import math\n",
"#Determine the size of a square column foundation that should carry a load of 2500 kN with a maximum settlement of 25 mm.\n",
"a=2500.\n",
"##doing for the first values only\n",
"Bf=4.\n",
"Bp=0.305\n",
"q=a/Bf**2.\n",
"Sep=4.\n",
"Sef=Sep*(2.*Bf/(Bf+Bp))**2\n",
"print'%s %.1f %s'%('Sef = ',Sef,' mm')\n",
"import math\n",
"%matplotlib inline\n",
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"import numpy\n",
"from math import tan\n",
"import matplotlib\n",
"from matplotlib import pyplot\n",
"#given\n",
"t=numpy.array([.02,.1,.25,.5,1,2.,4.,8.,16.,30.,60.,120.,240.,480.,960.,1440.])\n",
"gauge=numpy.array([3975.,4082.,4102.,4128.,4166.,4224.,4298.,4420.,4572.,4737.,4923.,5080.,5207.,5283.,5334.,5364.])\n",
"Hdr=2.24\n",
"t50=19.\n",
"#calculations\n",
"Cv=.197*(Hdr/2)**2 /t50/60.\n",
"leng=len(t)\n",
"logt=numpy.zeros(leng)\n",
"for i in range(0,leng):\n",
"\tlogt[i]=math.log(t[i])\n",
"\n",
"#results\n",
"print'%s %.4f %s'%('The value of Cv (cm^2/sec) = ',Cv,'')\n",
"pyplot.plot(logt,gauge)\n",
"pyplot.xlabel('Time(min) - log scale')\n",
"pyplot.ylabel('Dial reading (cm)')\n",
"pyplot.title('Graph of dial reading vs time')\n",
"pyplot.show()\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Sef = 13.8 mm\n",
"The value of Cv (cm^2/sec) = 0.0002 \n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmclXX5//HXW1zAwi2NZFGpUEEtERV3xkzEJTE3NMU1\n/SVf06+WpX4zsJLMcsFMW8yEcgk3RAMElXHJBU1UFDcqVFA0txQ3lrl+f3w+A8dxlgNzzpxZ3s/H\n4zy4z33u5boHmOt8dkUEZmZmjVml0gGYmVnr52RhZmZNcrIwM7MmOVmYmVmTnCzMzKxJThZmZtYk\nJwurKEmjJP25RNfqJuleSe9K+mURxx8j6b6C9+9J2qSI8zaRVCOpIv9/8r2/mLevkPSjSsSxsor9\nOVvrsmqlA7DWRdJhwGnAFsD7wL+BsRFxRZluWcqBPicCr0fEWisVSETXEsbSIiLipErH0BhJ1cCf\nI+KPtfva4s/ZXLKwApK+B1wC/ALoFhHdgO8AO0tavYFzmvtvSM08v9DGwDMlvF6zSeroX8g86red\ncLIwACStDZwLnBQRN0fE+wAR8XhEHBkRi/JxV+eqj0mSFgJVkvaVNFPSfyW9JGlkwXVrq2xOkDRf\n0is5KdUKYHVJY3P10VOSBjQS506SHpH0jqQZknasjQs4CvhBrub4Wj3nfk7SxBznw8CX6nxeWL3T\n4DMV8bOcK+kHkp4E3pO0iqQdJD0g6W1Jj0saVHD8sZJm5+f/p6QT61zvjPxzmyfpuDqfXS3pp3m7\nKh9zuqTX8jnH1Hn+2/IzzZD0s8JquDrXnSzpf+rse0LSAXn74nyP/0p6UtIW9VzjPGBX4LL8d3Jp\nPT/nqyVdnv89vSfpPklfkDQm/6yekbR1wTW7S7pJ0uuS/iXpu8X9rVizRYRffgEMARYDqzRx3NXA\nO8CO+f0awCBgi/x+K2ABMDS/3wSoAa4BugBbAq8De+TPRwEf5vsLGA082MC91wPeBo4gfdE5DHgL\nWDd//ifgJ43Efn1+dSFVs80D7i34vAb4Yt4u5pnq/VkBc4HHgB7559MDeAMYkj//en7/ufx+H6B3\n3t6NVP3Xv+DvZQHQD1gTuLZOnMueGajKf4ejgE7A3vlaaxc8/7VAZ6Av8FLh89d5huHA/QXv++Wf\n/WrAXsCjwFr5s82ALzRwnenAcXX2FcZ/NfAfoH/+Wd2Vf35H5n8PPwXuzseuAvwD+BGpCr038E9g\ncKX//3SEl0sWVmt94I2IqKndUfBN+ANJuxQcOyEiHgSIiI8j4p6IeDq/n0X6pTSITzo3Ij6MiKdI\nv+AOL/jsvoiYEuk3wl+ArzYQ477AcxFxTUTURMT1wLPA/gXH1FutJakTcCDw4xzH08DYho4v8pka\nEsClETE/Ij4m/eKbFBFT8vXuJP2y3Te/nxQR/87b9wJTSd/IAQ4FroqI2RHxAVBfCafwGRaTksfS\niJgMLAQ2K3j+kRHxUUQ809jzAxOArSX1yu+PAG6KiMX5Hl2BvpJWiYjnImJBIz+PxqoaA7g5Imbm\nn9UtwPsR8Zf872E8KZEAbAesHxE/i4gl+Wd2JelLg5WZk4XVehNYv7ANIiJ2ioh182e1+wN4ufBE\nSQMlTc9VA+8A/w/4XJ3rF57zEtC94P1rBdsfAJ0baAvpns8t9GKdazVkA9K30bpx1KvIZ2pM4X02\nBg7JifdtSW8DOwNfyPfaW9JDkt7Mn+1TcK8Ni405e7Mw4ZN+np+l/uef19BFIuI94G8sT+qHkUqH\nRMTdwGXAb4DXJP1OUmON1k21W7xesP1Rnfcf5vgh/Ry71/k5ngV8vonrWwk4WVitB4GPgQNW4txr\nSd9Ee0bEOsBv+fS/rY3qbM9fifvMJ/3CKLRxkdf6D7CknjgaUswzNabwF+RLpB5B6xa8ukbEBZLW\nAG4CLgA+n5PzJJZ/G3+1iJiLaUSuff5eBft6NXBsreuAw3O7UOeImL7shhG/johtSdVTmwJnNHCN\nUjZwvwz8u87Pca2I2K+E97AGOFkYABHxDqmB+3JJB0nqmhtmtwY+U3BofVUKnwXejohFkrYHvsWn\nf0n8SFKX3BB6DPDXlQhzErCppMMlrSppGLA5cHsjsdU+31LgZmBUjqMfcHQj9yrmmYr1F+AbkgZL\n6iSpc26M7gGsnl9vADWS9gYGF5w7HjhGUl9Ja/LpaihRRI+yep5/c1K7RGPPNImUjM8lVcOlG0rb\n5pLXaqSSy0fA0gau8Rp1OhLUE3+xZpA6DPwgP0MnSVtK2nYFrmErycnClomIXwKnAz8gNaouIH2j\n/gGp5AHpl0vdXzAjgJ9Iehc4h/oTwT3AHOBO4Je53r6h69X7Cywi3gL2A75H+uX6fWC/vL+haxU6\nmZQEFgBX5Vfh8YXbTT1T0YkjIuYBQ4GzSVUsL+VnUK7uOYWUFN4iVfvcWnDuFFJ35ruB50kNwHVj\nbugZ6joZWJv0/GNJJYdFjcS9iJRg9iCVtGqtBfw+xzuX9HfR0CDIMcDBkt6SdEl9t6kn/nr/PeSE\ntx+wNfAvUmnp9zkeKzOlNqQy3kCaC7xL+uaxOCK2L/jse6R/ZOvX/oeXdBZwXD7+lIiYmvcPIPWc\n6ExqLDy1rIFbSSiN1P0XsGqdunSrMEm/IFV9HVvpWKz1a4mSRQBVEdG/TqLoBexJaqCs3dcPGEaq\nBx1CqhKpLaZeARwfEX2APpKGtEDsZu2GpM0kfUXJ9qQvZbdUOi5rG1qqGqq+esmLSNUbhYYC10XE\n4oiYS6q2GChpQ6BrRMzIx41j5RpirTI8ird16EpqTF9IaoP4VURMrGxI1la0xFQEAdwpaSnwu4j4\ng6ShwLyIeHJ5wQFIXSAfKng/jzSgaTGf7OY3P++3Vi4n/U6VjsMgIh4F+lQ6DmubWiJZ7BwRr0ra\nAJgm6VlS3+jCHh+lnB/IzMxKrOzJIiJezX/+R9ItpFGwvYEncqmiJ/APSQNJJYbCvt89SSWK+Xm7\ncP+n+tZLcnWHmdkKiogmv7CXtc1C0pq1IzslfYZUmpgREd0iondE9CYlg20i4jVgInCYpNUl9SYV\nmWfkqQTezX27ReofPqG+e5ZjTpTW8Bo5cmTFY/Dz+fn8fO3vVaxylyy6AbfkEsSqwDWRu8IWWBZt\nRMyWNB6YTRptOiKWP80IUtfZLhTMs2NmZuVX1mQRaaKvrZs45ot13o8mzTxa97h/kGb/NDPrsCJA\nFWjl9QjuNqKqqqrSIZSVn69t8/OV1wcfwDXXwF57wehPfZVuGWUfwd2SJEV7eh4z67hqauC++2Dc\nOLj5ZthhBzj6aBg6FLp0Kd19JBFFNHB39CUfzcxalTlz4M9/Tknis59NCeLpp6F7MRPxl5GThZlZ\nhf33vzB+PIwdC88/D4cfDjfdBP37V6Z9oj6uhjIzq4AlS2DatFSCmDwZvv51OOoo2HtvWG21louj\n2GooJwszsxb0xBMpQVx7LWy8cUoQhx0G661XmXjcZmFm1kosWJCSw7hx8PbbMHw4VFfDZptVOrLi\nuWRhZlYGH34It96aEsSDD8I3v5lKEbvtBqu0okELLlmYmbWwmhr4+99TgrjpJthuu5QgbrgBPvOZ\nps9vzZwszMyaqba765//nMZAHH00zJoFPdrRQgpOFmZmK+Htt1OJYezYlCwOPxxuvLF1dXctJbdZ\nmJmtgMcfT1Nu3HEHDB6cShF77dWy3V1Lqdg2i1bUzGJm1nq99FJKDEOGwM47w9y5qWSx335tN1Gs\nCCcLM7NGvPMO/PCHqXppo43SCOtTT4V11610ZC3LycLMrB4ffwyXXAKbbgpvvZUarH/6U1hrrUpH\nVhlu4DYzKxCR5mk6+2zo2xfuvhu23LLSUVWek4WZWXbPPXDGGWm8xJVXwu67Vzqi1sPJwsw6vNmz\n4cwzU1XT6NEwbFjrGmXdGvjHYWYd1quvwoknQlVVej37bBov4UTxaWX/kUiaK+lJSTMlzcj7finp\nGUlPSLpZ0toFx58l6QVJz0oaXLB/gKRZ+bMx5Y7bzNqv996DkSNTW8Q668Bzz8Hpp8Maa1Q6star\nJfJnAFUR0T8its/7pgJbRMRXgeeBswAk9QOGAf2AIcDl0rKxkFcAx0dEH6CPpCEtELuZtSOLF8Nv\nf5t6OP3rX/DYY3DBBR2vG+zKaKnC1idGB0bEtIioyW8fBnrm7aHAdRGxOCLmAnOAgZI2BLpGxIx8\n3DjggPKHbWbtQQRMmABbbZWm5Pjb39I8ThtvXOnI2o6WaOAO4E5JS4HfRcQf6nx+HHBd3u4OPFTw\n2TygB7A4b9ean/ebmTXq44/T+hHPPJPGTey1V/ucu6ncWiJZ7BwRr0raAJgm6dmIuA9A0v8BiyLi\n2haIw8w6mPfegwMOSKvQPfqo2ySao+zJIiJezX/+R9ItwPbAfZKOAfYB9ig4fD7Qq+B9T1KJYj7L\nq6pq98+v736jRo1atl1VVUVVVVVzH8HM2qDXX4d99oFtt4Xf/AY6dap0RK1DdXU11dXVK3xeWWed\nlbQm0Cki3pP0GVLD9rmktpILgUER8UbB8f2Aa0kJpQdwJ/DliAhJDwOnADOAvwGXRsSUOvfzrLNm\nxty5qbpp2DA491xXOzWmtayU1w24JXdoWhW4JiKmSnoBWJ1ULQXwYESMiIjZksYDs4ElwIiC3/4j\ngKuBLsCkuonCzAzgqadg773TSOxTTql0NO2H17Mws3bjgQfSWtcXXwzf+lalo2kbWkvJwsysRUye\nnNabGDcurTlhpeVB7WbW5l1zDRx7LEyc6ERRLi5ZmFmbNmYMXHhhmkq8X79KR9N+OVmYWZsUAT/6\nEdx0E9x/f1rFzsrHycLM2pylS+Gkk2DmTLjvPthgg0pH1P45WZhZm/LRR3DEEfDuu6nqqWvXSkfU\nMbiB28zajHffTaOyO3WC2293omhJThZm1ia8/npa5nTzzeG66zzPU0tzsjCzVm/uXNhlF/jGNzzP\nU6U4WZhZqzZrFuy6a5q6Y9Qoz/NUKW7gNrNW6+9/hwMPTGMpDjus0tF0bE4WZtYqTZoExxwDf/kL\nDB5c6WjMEwmaWatzzz1wyCFw220wcGClo2nfip1I0G0WZtaqPP00HHooXH+9E0Vr4mRhZq3GK6+k\ncRQXXQRf+1qlo7FCThZm1irUDrg76aQ0QttaF7dZmFnFLVoE++4LffqkcRTuHttyim2zcLIws4qK\nSL2e3nkHbr7ZA+5amlfKM7M24cc/hueeS5MCOlG0XmVvs5A0V9KTkmZKmpH3rSdpmqTnJU2VtE7B\n8WdJekHSs5IGF+wfIGlW/mxMueM2s/L7/e9Tr6fbboM116x0NNaYlmjgDqAqIvpHxPZ535nAtIjY\nFLgrv0dSP2AY0A8YAlwuLau9vAI4PiL6AH0kefFEszbs9tth5Mi0drbXo2j9Wqo3VN36sP2BsXl7\nLHBA3h4KXBcRiyNiLjAHGChpQ6BrRMzIx40rOMfM2phHHoHjjoMJE+DLX650NFaMlipZ3CnpUUkn\n5H3dIuK1vP0a0C1vdwfmFZw7D+hRz/75eb+ZtTH//CcMHQpXXulBd21JSzRw7xwRr0raAJgm6dnC\nDyMiJJWsC9OoUaOWbVdVVVFVVVWqS5tZM/3nP7D33qlRe//9Kx1Nx1RdXU11dfUKn9eiXWcljQQW\nAieQ2jEW5Cqm6RGxuaQzASLi/Hz8FGAk8GI+pm/efzgwKCK+U+f67jpr1kp98AHssUdawGj06EpH\nY7VaxdxQktaU1DVvfwYYDMwCJgJH58OOBibk7YnAYZJWl9Qb6APMiIgFwLuSBuYG7+EF55hZK7d0\nKXzrW6l94rzzKh2NrYxyV0N1A27JHZpWBa6JiKmSHgXGSzoemAscChARsyWNB2YDS4ARBUWFEcDV\nQBdgUkRMKXPsZlYCEWnhooULYfx4j85uqzyC28zK6oIL0poU990Ha69d6WisLo/gNrOKu/ZauOwy\neOABJ4q2ziULMyuL6dNh2LA0jceWW1Y6GmtIq2jgNrOOadaslCj++lcnivbCycLMSmrevDTd+CWX\npG6y1j44WZhZyfz3v2kBo5NPTl1lrf1wm4WZlcSiRWl0dt++8Otfu4tsW+E2CzNrUWedBZ07w5gx\nThTtkbvOmlmz3XYb3HgjPPaYFzBqr5wszKxZXnoJvv1tuOUW+NznKh2NlUvR1VCSOktao5zBmFnb\nsngxHH44nH467LRTpaOxcmqwgVvSKqQFhg4HdiIlFgFLgQeBa4AJralF2Q3cZi3rzDPhiSfgb3+D\nVdwC2iYV28DdWLK4F7iPNBPs4xHxcd6/BtCftNrdLhGxW8mibiYnC7OWM3kynHACzJzpZVHbslIk\nizVqE0QjN2nymJbkZGHWMubPhwED0iyyu7War4u2MpqdLOpcbF1gI2BZP4eIeKxZEZaBk4VZ+S1Z\nAl/7GgweDD/6UaWjseYq2ayzkn4KHAP8C6gp+MgD+c06oHPPhTXWSOMqrOMopuvsMOBLEbGo3MGY\nWet2551w1VUeT9ERFdN/4Wlg3XIHYmat26uvwlFHwbhx0K1bpaOxltZkm4Wk7YBbgaeA2sbsiIj9\nyxzbCnObhVl5LF0Ke+4Ju+6aqqGs/SjlSnnjgPNJyaK2zcK/kc06kPPOS2tp//jHlY7EKqWYZLEw\nIi5d2RtI6gQ8CsyLiG9I2h64DFgNWAKMiIhH8rFnAceRBv6dEhFT8/4BwNVAZ2BSRJy6svGY2Yqp\nroYrroB//MPtFB1ZMW0W90n6uaQdJW1T+1qBe5wKzGZ5aeQC4JyI6A/8OL9HUj9SY3o/YAhwubRs\n7sorgOMjog/QR9KQFbi/ma2k11+HI4+Eq6+G7t0rHY1VUjEli21Iv+h3qLO/ya6zknoC+wDnAafn\n3a8CtUu3rwPMz9tDgesiYjEwV9IcYKCkF4GuETEjHzeONA3JlCJiN7OVVFMDw4enRu299qp0NFZp\nTSaLiKhqxvUvBs4A1irYdyZwv6RfkUo2O+b93YGHCo6bB/QAFuftWvPzfjMro/PPhw8+gJ/8pNKR\nWGtQzKC80cAFEfFOfr8u8L2IaHTspqT9gNcjYqakqoKP/khqj7hF0iHAVcCeK/sAdY0aNWrZdlVV\nFVVVVQ0ea2b1u+8+uPRSePRRWNULGbQr1dXVVFdXr/B5xXSdfTwitq6zb2Zuc2jsvNHAcFIjdmdS\n6eJmYGhErJWPEfBORKwt6UyAiDg/fzYFGAm8CEyPiL55/+HAoIj4Tj33dNdZs2Z64w3YZpvUqL3v\nvpWOxsqtlMuqriKpc8GFuwCrN3VSRJwdEb0iojdwGHB3RAwH5kgalA/7GvB83p4IHCZpdUm9gT7A\njIhYALwraWBOLsOBCUXEbWYrqKYGjj4ahg1zorBPKqaAeQ1wl6SrSOtZHEtqZF5RtV/5TwR+k6c6\n/zC/JyJmSxpP6jlV26W29pwRpK6zXUhdZ924bVYGF14Ib70Fo0dXOhJrbYqddXZvYI/8dlpE3FHW\nqFaSq6HMVt6DD8IBB8CMGbDxxpWOxlpKKdazaPI3bzHHtKRWFo5Zm/HWW9C/f2rUHjq00tFYSypF\nm0W1pDMkbVrPxTeT9EPgnuYEaWaVFwHHHgsHHuhEYQ1rrM1iMHAEqX1hS+A9UpvFZ0nzRF0DfL3s\nEZpZWY0ZA6+8AjfcUOlIrDUrts2iE7B+fvtGRCwta1QrydVQZivmkUdSr6eHHoIvfrHS0VgllHLW\nWXJyeK3ZUZlZq/HWW3DooWk8hROFNaWokkVb4ZKFWXFqalL7xJe+BJdcUulorJJKWrIws/bll79M\nI7VvuqnSkVhb4WRh1sHcey9cfHFqr1i9ybkYzJImp/uQ9F49r3mSbpHkmk6zNuS11+Bb30rrU/Tq\nVelorC0ppmQxBngZuC6/Pwz4EjCTNGNsVVkiM7OSWro0JYpjj4UhXj7MVlAxs84+GRFfqbPv8YjY\nWtITEfHVska4AtzAbdawc86BBx6AqVO9PKotV8oG7g8kDQNqh+wcDHyUt/2b2awNmDIF/vQnr6Nt\nK6+YksWXSFVRtcuqPgT8L2nFugERcX9ZI1wBLlmYfdrLL8N228H48bDbbpWOxlqbZk8k2BY5WZh9\n0qJFMGhQmk32hz+sdDTWGpUsWUj6PHACsAnLq60iIo5rbpCl5mRh9kmnnQZz5sCtt8IqxSx1Zh1O\nKdssbgXuBaYBNXmffyObtXI33QQTJqR2CicKa66VWoO7tXLJwix54QXYaSeYPBm23bbS0VhrVso1\nuG+X5NV4zdqIDz+Egw+Gc891orDSKaZksRBYE1gELM67IyLWKnNsK8wlCzP49rfh/ffh2mtBTX5f\ntI6uZCWLiPhsRKwSEZ0jomt+FZ0oJHWSNFPSbQX7vivpGUlPSfpFwf6zJL0g6VlJgwv2D5A0K382\npth7m3U0Y8fC/ffD73/vRGGl1WADt6S+EfGMpG3q+zwiHivyHqcCs4Gu+bq7A/sDX4mIxZI2yPv7\nAcOAfkAP4E5JfXJR4Qrg+IiYIWmSpCERMaXI+5t1CLNmwfe/D9OnQ9eulY7G2pvGekOdTuoyexH1\n937avamLS+oJ7AOcl68HcBLw84hYDBAR/8n7hwLX5f1zJc0BBkp6EegaETPyceOAAwAnC7Psvffg\nkEPgwgthyy0rHY21Rw0mi4g4If9Z1YzrXwycARRWW/UBdpM0mjRtyPcj4lGgO2l0eK15pBLG4rxd\na37eb2ZABJxwAuy6Kxx1VKWjsfaqsWqog2hkPEVE3NzYhSXtB7weETMlVdW557oRsYOk7YDxQMmm\nOh81atSy7aqqKqqqqho81qw9uPxyeO65NEmgWVOqq6uprq5e4fMa7A0l6WpSsvg8sBNwd/5od+CB\niNiv0QunksNwYAnQmVS6uBlYHzg/Iu7Jx80hzTv1bYCIOD/vnwKMBF4EpkdE37z/cGBQRHynnnu6\nN5R1KI88AvvumxLFl79c6WisLWp2b6iIOCYijgVWB/pFxEERcRCwRd7XqIg4OyJ6RURv0hoYd0fE\ncGAC8LUc5KbA6hHxBjAROEzS6pJ6k6qrZkTEAuBdSQMliZSAJjR1f7P27q234NBD4be/daKw8itm\nuo9ewIKC968BG63EvWq/8l8FXCVpFmnsxlEAETFb0nhSz6klwIiCYsII4GqgCzDJPaGso6upgaOP\nThMEHnhgpaOxjqCYQXmXAZsC1wIidW99ISK+W/7wVoyroawjiIBTTkldZadO9Tra1jylnHVWwDeB\n3Uilg3sj4paSRFliThbWEfzsZ3DjjXDPPbD22pWOxto6r2dh1g797ndwwQVplPaGG1Y6GmsPSjbd\nh6QdJT0iaaGkxZJqJL1bmjDNrFg33ZQmB7zjDicKa3nFzDp7GfAt4AVSF9jjgcvLGZSZfdL06XDS\nSfC3v7nnk1VGUUuiRMQLQKeIWBoRfwKGlDcsM6s1cyYMGwZ//Sv071/paKyjKqbr7PuS1gCekHQB\nqRut57M0awFz5qRBd1dcAbs3ORubWfkUU7I4Kh93MvAB0BM4qJxBmRksWAB77QUjR8JB/h9nFVZU\nbyhJawK9IuK58oe08twbytqL//4XBg1KSeKccyodjbVnpewNtT8wE7gjv+8vaWLzQzSz+nz0EQwd\nCrvsAj/6UaWjMUuKGZT3GGkup+kR0T/veyoiWt2s+S5ZWFu3ZElal2KNNdKyqKsU1QXFbOUVW7Io\npoF7cUS8o0+u0Viz0pGZWb0iUvfYhQvh+uudKKx1KSZZPC3pCGBVSX2AUwDPnG9WYuecA48/Dnff\nnUoWZq1JMd9dTiZNS/4xcB3wLvC/5QzKrKO59FK44QaYNMnrZ1vr1GibhaRVgWkR0SZ6eLvNwtqi\na6+FH/4Q7rsPNtmk0tFYR1OS3lARsQSokbROySIzs2XuuANOOw0mT3aisNatqBHcwCxJ0/I2QETE\nKeULy6z9e/hhOPJIuOUW2LLV9S00+6RiksXN+VVbv6OCbTNbCc8+m8ZSXHVVGk9h1tp5PQuzFjZv\nHuy8c5pu/JhjKh2NdXQlG8FtZqXz1ltpvqeTT3aisLal7MlCUidJMyXdVmf/9/JCSusV7DtL0guS\nnpU0uGD/AEmz8mdjyh2zWTm8/z7stx/svTeccUalozFbMS1RsjgVmE1BO4ekXsCewIsF+/oBw4B+\npPUyLtfyYeNXAMdHRB+gjySvp2FtyhtvwJ57wuabp2VRzdqaBhu465YE6oiI2L+pi0vqCewDnAec\nXvDRRcAPgFsL9g0FrouIxcBcSXOAgZJeBLpGxIx83DjgAGBKU/c3aw3++c9UmjjoIDjvPE/jYW1T\nY72hLizB9S8GzgDWqt0haSgwLyKerDPfVHfgoYL384AewOK8XWt+3m/W6s2YAQcckKbyOOmkSkdj\ntvIaTBYRUd2cC0vaD3g9ImZKqsr71gTOJlVBLTu0Ofepa9SoUcu2q6qqqKqqKuXlzYp2221w3HHw\nxz/C/k2Ww81aRnV1NdXV1St8XjFTlG8KjCbND9U5746I+GIT540GhgNL8nlrAZOBXUkr7kFadW8+\nMBA4Nl/4/Hz+FGAkqV1jekT0zfsPBwZFxHfquae7zlqrcMUV8JOfwK23wvbbVzoas4aVsuvsn4Df\nkqqDqoCxwDVNnRQRZ0dEr4joDRwG3B0RB0dEt4jonffPA7aJiNeAicBhklaX1BvoA8yIiAXAu5IG\n5gbv4cCEIuI2a3E1NXDWWXDxxXD//U4U1n4UM4K7S0TcqfS1/UVgVF4QaUUXe6zvK/+yfRExW9J4\nUs+pJcCIgmLCCOBqoAswKSLcuG2tzscfp2qnf/8bHngA1l+/0hGZlU4x1VAPkKqObgTuAl4Bfh4R\nm5U/vBXjaiirlHfegQMPhHXWgWuugS5dKh2RWXFKWQ31v8CapEWPtgWOBI5uXnhm7cfLL6f5nbba\nKq1J4URh7ZHnhjJrhieeSKOyTzstvVTSvn1m5dfsNbgljYmIUxsYnFfUoDyz9mzaNDjiCLjsMjj0\n0EpHY1ZejTVwj8t/1jc4z1/frUMbOxZ+8AO46SbYdddKR2NWfkVVQ0naACAi/lP2iJrB1VBWbhHw\ns5+ldSggMJazAAASJ0lEQVQmTYK+fSsdkVnzNLuBW8koSW8AzwPPS3pD0shSBmrWVixeDCeeCBMm\npK6xThTWkTTWG+o0YGdgu4hYNyLWBbYHdpZ0eiPnmbU7CxemKTvmzYN77oENN6x0RGYtq8FqKEmP\nA3vWrXrKVVLTImLrFohvhbgaysphwQLYd1/o3z9N47HaapWOyKx0SjHOYtX62ijyvmJGfpu1ec88\nAzvumGaO/cMfnCis42rsl/7ilfzMrM174w0YPTr1erroIjjaw1Ctg2usZPEVSe/V9wK2aqkAzVrS\nwoWpt9Pmm6e5np56yonCDBpfz6JTSwZiVkmLFqVqpp/9DKqq4KGH4MtfrnRUZq2H2x6sQ6upgeuv\nTyvZ9emTxk7071/pqMxaHycL65AiYMqUtPbEGmvAlVfC7rtXOiqz1svJwjqchx6CM89MXWJHj4Zv\nftMTAJo1pZgpys3ahWeeSYnhkENg+PDUeH3ggU4UZsVwsrB27+WX4fjjYdAg2GkneP759H5Vl6vN\niuZkYe3Wm2/C978PW28N3bqlJHHGGV6cyGxlOFlYu/P++6ktYrPN0vasWen9OutUOjKztqvsyUJS\nJ0kzaxdRkvRLSc9IekLSzZLWLjj2LEkvSHpW0uCC/QMkzcqfjSl3zNY2vfoqnHtu6gL75JPw4INp\nLqfu3SsdmVnb1xIli1OB2SxfMGkqsEVEfJU09flZAJL6AcOAfsAQ4HJpWdPjFcDxEdEH6CNpSAvE\nbW1ABNx7LwwbBv36pR5OU6emsRN9+lQ6OrP2o6zJQlJPYB/gSkAAETEtImryIQ8DPfP2UOC6iFgc\nEXOBOcBASRsCXSNiRj5uHHBAOeO21m/hQvjd7+CrX01rTOy8M8ydm0oSW25Z6ejM2p9y9we5GDgD\nWKuBz48Drsvb3YGHCj6bB/QgTVo4r2D//LzfOqDnnoPLL4e//AV22y1N8rfHHu7+alZuZUsWkvYD\nXo+ImZKq6vn8/4BFEXFtKe87atSoZdtVVVVUVX3q1tbGLFkCt98Ov/lNaov49rdh5kzYaKNKR2bW\n9lRXV1NdXb3C5xW1BvfKkDQaGA4sATqTShc3RcRRko4BTgD2iIiP8vFnAkTE+fn9FGAk8CIwPSL6\n5v2HA4Mi4jv13NOLH7Ujr7+epuH47W+hZ0/4n/+Bgw9O03OYWWmUYvGjZomIsyOiV0T0Bg4D7s6J\nYgipampobaLIJgKHSVpdUm+gDzAjIhYA70oamBu8hwMTyhW3VVZE6sV05JGp6+u//rV8zesjjnCi\nMKuUlhrDKpb3hvo1sDowLXd2ejAiRkTEbEnjST2nlgAjCooJI4CrgS7ApIiY0kJxWwv54IPUg+my\ny+Ddd+Gkk+DSS2G99SodmZlBGauhKsHVUG3Lm2/CXXelrq633goDB6aqpr32glU8XNSsRRRbDeVk\nYS1m8eI04+sdd6QE8eyzqUfT4MHwjW9A796VjtCs43GysIqLgDlzUmKYOhWqq9Pqc3vtlRLEjju6\nDcKs0pwsrCLeeWd51dLUqWm50sGD0+vrX4cNNqh0hGZWyMnCWsSSJTBjxvLkMGsW7LLL8gTRr58H\nzJm1Zk4WVhbvvZcGxs2cCXffDdOnw8YbL08Ou+wCnTtXOkozK5aThTVLBLzyCjz++Cdfr7wCW2yR\n5mTabTfYc0/4whcqHa2ZrSwnCyvakiVpYaDahDBzZvoToH//tHhQ7WvTTb3CnFl74mRh9Vq4MFUj\nFZYWnn4aevT4ZFLYemvYcEO3N5i1d04WHVBEGug2b94nX/Pnpz///e+0QNAWW3wyKWy1FXTtWuno\nzawSnCzamZqaNLFe3URQNymsuWYqJfTs+enXRhulcQ6uRjKzWk4WbcjSpanhuG5JoPD16qtpDen6\nkkDtq0ePlCzMzIrlZNHKLV6cBq/dcEOaF2mNNRpPBN27e7SzmZWek0UrtGjRJxPEZpvBIYfAQQd5\nIR8zqwwni1aiNkGMHw8TJy5PEAcfDL16VTo6M+vonCwqaNEiuPPOVIKYOBE233x5CcIJwsxaEyeL\nFrZoEUybtjxB9Ou3PEH07FmRkMzMmuRk0QI+/nh5grjtNicIM2t7nCzKpDZBjB8Pt9+eBrjVJoge\nPcp6azOzknOyKKGPP07Tb99wQ0oQW265PEF0717y25mZtZhik0XZVzqW1EnSTEm35ffrSZom6XlJ\nUyWtU3DsWZJekPSspMEF+wdImpU/G1PumAE++ii1PQwfnmZV/dWvYPvt4amn4N574bvfdaIws46j\n7MkCOBWYDdR+5T8TmBYRmwJ35fdI6gcMA/oBQ4DLpWXT2F0BHB8RfYA+koaUI9DaBHHkkWkSvQsv\nhIEDYfZsuOceOPlkJwgz65jKmiwk9QT2Aa4Ean/x7w+MzdtjgQPy9lDguohYHBFzgTnAQEkbAl0j\nYkY+blzBOc320UdpgFxtgrjoorQ2dGGC2HDDUt3NzKxtKveUchcDZwBrFezrFhGv5e3XgG55uzvw\nUMFx84AewOK8XWt+3r/SPvoIpkxJbRCTJqWZVw85JFU1eSEfM7NPK1uykLQf8HpEzJRUVd8xERGS\nStoiPWrUqGXbVVVVVFWlW3/44ScTxDbbpARx0UXQrVv91zIza2+qq6uprq5e4fPK1htK0mhgOLAE\n6EwqXdwMbAdURcSCXMU0PSI2l3QmQEScn8+fAowEXszH9M37DwcGRcR36rnnJ3pD1SaI8eNh8uTl\nCeLAA50gzMyglXWdlTQI+H5EfEPSBcCbEfGLnCDWiYgzcwP3tcD2pGqmO4Ev59LHw8ApwAzgb8Cl\nETGlnvvEBx8EkyenEsTkyTBgQEoQ3/ymE4SZWV3FJouWXAanNiudD4yXdDwwFzgUICJmSxpP6jm1\nBBhRUEwYAVwNdAEm1Zcoap1/Pvz97ylBjBkDn/98WZ7FzKxDaXeD8mpqwutGm5kVqdUMymtpThRm\nZqXX7pKFmZmVnpOFmZk1ycnCzMya5GRhZmZNcrIwM7MmOVmYmVmTnCzMzKxJThZmZtYkJwszM2uS\nk4WZmTXJycLMzJrkZGFmZk1ysjAzsyY5WZiZWZOcLMzMrElOFmZm1iQnCzMza1LZkoWkzpIelvS4\npNmSfp73by9phqSZkh6RtF3BOWdJekHSs5IGF+wfIGlW/mxMuWI2M7P6lS1ZRMRHwO4RsTXwFWB3\nSbsAvwDOiYj+wI+BCwAk9QOGAf2AIcDl0rJFUq8Ajo+IPkAfSUPKFXdrVV1dXekQysrP17b5+dq/\nslZDRcQHeXN1oBPwNrAAWDvvXweYn7eHAtdFxOKImAvMAQZK2hDoGhEz8nHjgAPKGXdr1N7/sfr5\n2jY/X/u3ajkvLmkV4DHgS8AVEfG0pDOB+yX9ipSsdsyHdwceKjh9HtADWJy3a83P+83MrIWUu2RR\nk6uhegK7SaoC/gicEhEbAacBV5UzBjMzaz5FRMvcSDoH+BD4cUSslfcJeCci1s4lDiLi/PzZFGAk\n8CIwPSL65v2HA4Mi4jv13KNlHsbMrB2JCDV1TNmqoSStDyyJiHckdQH2BH4CzJE0KCLuAb4GPJ9P\nmQhcK+kiUjVTH2BGRISkdyUNBGYAw4FL67tnMQ9sZmYrrpxtFhsCY3O7xSrAnyPiTkknAr+RtAap\npHEiQETMljQemA0sAUbE8mLPCOBqoAswKSKmlDFuMzOro8WqoczMrO1qlyO4JX1PUo2k9SodSylJ\n+qWkZyQ9IelmSWs3fVbrJ2lIHoj5gqQfVjqeUpLUS9J0SU9LekrSKZWOqdQkdcqDbG+rdCylJmkd\nSTfm/3ezJe1Q6ZhKKQ+EfjoPer421/jUq90lC0m9SO0jL1Y6ljKYCmwREV8ltfWcVeF4mk1SJ+Ay\n0kDMfsDhkvpWNqqSWgycFhFbADsA/9POng/gVFL1cXusphhDqvruSxpc/EyF4ykZSZsAJwDbRMRW\npLFwhzV0fLtLFsBFwA8qHUQ5RMS0iKjJbx8mdUlu67YH5kTE3IhYDFxPGqDZLkTEgoh4PG8vJP2y\n6V7ZqEpHUk9gH+BKoF11MMkl910j4iqAiFgSEf+tcFil9C7py8yaklYF1mT5IOlPaVfJQtJQYF5E\nPFnpWFrAccCkSgdRAj2Alwve1w7GbHfyN7n+pETfXlwMnAHUNHVgG9Qb+I+kP0l6TNIfJK1Z6aBK\nJSLeAi4EXgJeIQ1juLOh49tcspA0Ldev1X3tT6qWGVl4eIXCXGmNPN83Co75P2BRRFxbwVBLpT1W\nXXyKpM8CNwKn5hJGmydpP+D1iJhJG/y/VoRVgW2AyyNiG+B94MzKhlQ6kr4E/C+wCam0+1lJRzR0\nfFmn+yiHiNizvv2StiR9E3gizz/YE/iHpO0j4vUWDLFZGnq+WpKOIRX792iRgMpvPtCr4H0vPjm9\nS5snaTXgJuAvETGh0vGU0E7A/pL2AToDa0kaFxFHVTiuUplHqql4JL+/kXaULIBtgQci4k0ASTeT\n/k6vqe/gNleyaEhEPBUR3SKid0T0Jv1Fb9OWEkVT8my7ZwBD86y+7cGjpJmEN5G0Omnm4YkVjqlk\n8iwFfwRmR8QllY6nlCLi7Ijolf+/HQbc3Y4SBRGxAHhZ0qZ519eBpysYUqk9C+wgqUv+d/p1UkeF\nerW5ksUKaI/VG78mzeA7LZeeHoyIEZUNqXkiYomkk4E7SL0x/hgR7abHCbAzcCTwpKSZed9Z7XRg\naXv8P/dd4Jr8ReafwLEVjqdkIuIJSeNIX9hqSJO+/r6h4z0oz8zMmtRuqqHMzKx8nCzMzKxJThZm\nZtYkJwszM2uSk4WZmTXJycLMzJrkZGGtkqTP5WmvZ0p6VdK8vP2epMtKeJ9f5bXhiz2+u6Qbijju\nLkldVzCWTSTNWpFzyknS3PY2zb+tPI+zsFZP0kjgvYi4qMTX7QrcFRHbl/K6+donAF1XJOY80eBt\nebroipP0b2BAnnDOOjiXLKytEICkqtpFdiSNkjRW0r35W/CBuaTwpKTJedplJA2QVC3pUUlTJH0h\nX3MosGyWzXyN0bkE86ikbSRNlTRH0v/Lxyz79i/pGKVFqCZLel7SLwrinUgjawM0+bBS5zzb6ZN5\nxtOqvH9NSePzgjU3S3pI0oB6zj8/H/OEpF/mfd0k3SLp8fzaIe+/JT/vUznJ1RfPkZIezj+b3yot\nl2wdiP/Cra3rDewO7A/8BZgWEV8hre++b57E79fAQRGxLfAn4Lx87i6kqQ5qBfBiRPQH7iWt+/5N\n0qJF5zZw/68ChwJbAcOU1ncgIl4D1pf0mZV8rv8BluZnOZy0nv0apPXo38yLKZ0DDKDONBuSPgcc\nEBG1C2X9NH90KTA9IrYmzaZaOw/Qcflnsx1wiqR161yvb37GnfLPpgZocHZSa5/a89xQ1v4FMDki\nlkp6ClglIu7In80iTb28KbAFcGeeT6sTae5+gI2AV+tcc2LB+Z+JiPeB9yV9LGmtemK4KyLeA5A0\nG9iY5bPmvkaaRffZlXi2nUm/3ImI5yS9mJ9lZ+CSvP9pSfWt3fIO8JGkPwK35xekpHpkPreGtPgN\nwKmSDsjbvYA+wIz8XqQZjgcAj+afYRdgwUo8k7VhThbW1i2C9MtP0uKC/TWkf98Cno6InRo4v27p\n+uOC8xfVc726Pi7YXkpKRrXEp7/1H8DyNVeOj4jHGoir9vwV2Q9ATp7bk37JHwyczPIp7T9xbq7e\n2gPYISI+kjSdNN14XWMj4uzG7mvtm6uhrC0rZsGd54ANCurnV5PUL3/2IvCFBs5b2cV8Cs/rRp21\nOSJiQkT0z6/GEsV95KqePEX2RqRn+TupSoj8HJ9qDM9VX+tExGTgdFJVGcBdwEn5mE65pLQW8HZO\nFJuTqtw+EXI+72BJG+Rz15O0UeM/BmtvnCysrYiCP+vbhk9PkR15Xe+DgV9IehyYCeyYP7+ftABM\nfec3du2G7r/ss9yI/mauxloRtde7HFglVzNdDxwdEYvy/g0kPU1qi3gaqLsudFfgNklPkJLOaXn/\nqcDu+ZqPAn2BKcCquQrt58CDnwooTRn/I2BqvuZUGk6y1k6566x1WEpLnU6PiO3KcO0TSW0eF5f4\nuqsAq0XEx0rLYk4DNo2IJaW8j1ldbrOwDisiFkqaLmn3iJhe4ssPI3XNLbXPAHfnXl4CTnKisJbg\nkoWZmTXJbRZmZtYkJwszM2uSk4WZmTXJycLMzJrkZGFmZk1ysjAzsyb9f7OvE0+0Y33YAAAAAElF\nTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x54c9290>"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|