summaryrefslogtreecommitdiff
path: root/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter11.ipynb
blob: acd23c6c3f739e3982b52106bfe02f6bdb51938e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
{
 "metadata": {
  "name": "",
  "signature": "sha256:5a229faa6e3645196b99851feb0572545419f102708048be683493e984195c30"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter11-Compressibility of Soil"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg303"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#evaluvate The elastic settlement at the centre of foundation\n",
      "Tz=150.\n",
      "b=1.\n",
      "l=2.\n",
      "z=5.*b\n",
      "Es= (10000*2 + 8000*1 +12000*2)/5\n",
      "a=4.\n",
      "H=z\n",
      "m=l/b\n",
      "n=2.*H/b\n",
      "F1=0.641 ##from tables 11.1 and 11.2\n",
      "F2=0.031\n",
      "u=0.3\n",
      "Is= F1 + ((2.-u)/(1.-u))*F2\n",
      "If=0.71 ##from  table 11.3\n",
      "Sef= Tz *a*b/l *(1-u**2)*Is*If/Es\n",
      "Ser=0.93*Sef\n",
      "print'%s %.3f %s'%('The elastic settlement at the centre of foundation =',Ser,'m')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The elastic settlement at the centre of foundation = 0.012 m\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg312"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate the value of pressure\n",
      "#find the value of e and plot the graph\n",
      "## one value of e is done \n",
      "Gs=2.75\n",
      "A=30.68\n",
      "Ms=128.\n",
      "p=1.\n",
      "Hs=Ms/(A*Gs*p)\n",
      "H=2.540\n",
      "Hv=H-Hs\n",
      "e=Hv/Hs\n",
      "print'%s %.3f %s'%('the value of e for give values =',e,'')\n",
      "import math\n",
      "%matplotlib inline\n",
      "import warnings\n",
      "warnings.filterwarnings('ignore')\n",
      "from math import log\n",
      "import numpy\n",
      "from math import tan\n",
      "import matplotlib\n",
      "from matplotlib import pyplot\n",
      "#given\n",
      "p=numpy.array([0,0.5,1,2,4,8,16,32])\n",
      "e=numpy.array([0.671,0.637,0.622,0.599,0.572,0.529,0.464,0.390])\n",
      "e1=.9\n",
      "e2=.8\n",
      "sig1=4.\n",
      "sig2=2.\n",
      "#calculations\n",
      "Cc=(e1-e2)/log(sig1/sig2)\n",
      "\n",
      "#results\n",
      "print '%s %.2f %s'%('The value of Cv (cm^2/sec) = ',Cc,'')\n",
      "pyplot.plot(p,e)\n",
      "pyplot.xlabel('Pressure (ton/ft^2)')\n",
      "pyplot.ylabel('void ratio ,e')\n",
      "pyplot.title('Graph of pressure vs void ratio')\n",
      "pyplot.show()\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the value of e for give values = 0.674 \n",
        "The value of Cv (cm^2/sec) =  0.14 \n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecXVW5//HPlxRIiEiLAUOJSJEgJURCCcJgKKEGRapK\nUSFK9QoKKF4G8YIRKXr9URQERAVEkCAEAgQGQUIJEIophBIghZYQSIALCXl+f6x9mMNk5syZyZzZ\n58x836/XvHJ2WXs/s8/kPGettdfaigjMzMxaskLeAZiZWXVzojAzs5KcKMzMrCQnCjMzK8mJwszM\nSnKiMDOzkpworGIk1Uu6poOONUDSvyS9I+m8jjimlU/SOEnfamHbIElLJVXs80TSJZLOqNTxrbSe\neQdgnUfSIcB/AZsB7wIvAldHxCUVOmVHDtI5Bng9IlbpwGNamSJir846l6Qjge9ExJeLzv/9zjq/\nLcs1im5C0snARcAYYEBEDAC+BwyX1LuFMsv796HlLF9sfWBqRxxIUu5fkCT1yDuGPFTDtbd2iAj/\ndPEf4NPAIuCrrex3FXAJMC7b/yvA3sATwNvAy8CZRfsPApYCRwOzgTnAyUXbzwSuB64G3gGeAYaW\nOP8OwKPAAuARYPuiuD4EPgAWAl9pIfZLgTuzczUA6xVtXwocC8wAns/W7QNMBt4C/g1sXrT/qcCs\n7FjTCucEhgGTsuvxKnB+tr4OeKVJTDOLytUDfweuycp+O3tfrsiu2yzgbGCFZn63zwLvAasVrRsC\nvAH0ADYE7suu2xvAdS1c39uB45qsexLYv9T1z7Y1kL7lk53z19m5ngeOy67vMrEXXYcfA08B72fl\nTwOey67vf4pi2DTbZ0n2Xs8ven/PLjrm0dl7OQ8YC6yd9/+zrvyTewD+6YQ3GUYCi1v6j1y031XZ\nh0ThA3pFYGdgs2x58+zDcVS2PCj7gPgL0Af4IvA6MCLbXp/9px9Jql2cA0xs4dyrkz6wv0Gq6R4C\nzC98OAJXAj9vJfZ3gB2B3qTa0/1F25cC44FVs99rCPAasE0W2+GkprhewCakpLhWVnY9YIPs9UTg\nG9nrvsCw7HUdyyaKF/lkovgQ2C9bXgn4Bykx9wH6Aw8Dx7Tw+00Avlu0fB5wcfb6WuD07HVvYIcW\njvEt4IGi5cHZNe9VxvW/F/h29vp7pNrdQGC1bNtHlE4Uj2f7r5it+3rR9T2I9MVkQLZ8RPF71/T9\nJ32BeQPYKvt9fwvcl/f/s67846an7mFN4M2IWFpYIelBSW9Jek/SjkX73hwREwEi4oOIuC8i/pMt\nPw1cR0oexc6KiPcj4hnSf+hDi7bdHxF3RPof/mdgyxZi3BuYHhF/iYilEXEd6Zv8fkX7tNaUdWtE\nPBARHwI/BbaXNLBo+7kRsSAiPiD1eVwWEY9G8idSjWV70rfZFYHNJPWKiJcj4oXsGB8CG0laMyLe\ni4hHWomp2IMRcUv2+tPAnsB/ZdfuDVJyO6SFsn8lu66SBBycrSvENEjSwIj4MCIebOEYNwNbSVo3\nW/4GcGNELKa8619wEHBhRMyOiLdIXwBKvTcB/Dbb/wOAiPh7RLyavf4bqXawbbZ/a+/zN4ArImJy\n9l6fTnqv12ulnLWTE0X3MA9Ys7jPISJ2iIjVsm2F9QG8UlxQ0raS7pX0uqQFwGhgjSbHLy7zMqmp\npOC1otfvASu10Pfx2axssZeaHKuUIDXfpIWId0nfiIvLF8e5PnBylizfkvQWsA6pCeN54AekWsBr\nkq6VtHZW7jvAxsBUSY9I2rvM+CiOLzt/L2Bu0fkvJdUsmnMT6cNwLWAnYGlEPJBt+zHpw/URSc9I\nOqq5A0TEQuA2GhP5IaTaILTt+q/Nsu95a5r+XR0u6Ymi3/2LLPt31ZK1s9iAj9/reaQai1WAE0X3\nMJH0bXn/dpT9K+mb6DoRsSrpw6zp3816TV7Pbsd5ZpM+PIut34ZjCVj34wWpH6k5ZU7RPsV3Yb0M\n/E9ErFb00y8irgeIiGsj3XWzflZuTLb+uYg4LCL6Z+v+LqkP6S6yvkXn78GyH/rF53+F9J6sUXT+\nT0fE5s39ctk39ztJNYnDSM1NhW2vRcQxETGQlMgvlrRBC9fpWuBQSdsDK0XEvdn6tlz/uSz7nrfm\n499d0vrA70l9G6tnX1ieobEm0drdcnNIzZ6F461MSjLt+buzMjhRdAMRsQA4i/QBcoCkT0laQdJW\nwMpFuzZX5e8HvBURH0oaRvqQavof+QxJfSRtBhxJ6sBuq3HAxpIOldRT0sHAF4BbS8TW1F6SCndx\nnU3qD2npw+MPwPckDVOysqS9JfWTtLGkr0hakfRh/n+kNngkfVNSIQG8TboWS4FnSbWlvST1As4g\nNV81KyLmkj74Lyh6Pz4vaacSv99fSe33B9DY7ISkAyWtky0uKIqpOeNICeAsUjNi8fpS17/Y34AT\nJQ2UtBqpY7otVs5ifBNYIasBfbFo+2vAOtl1LBCNfwPXAkdJ2jJ7j84BHoqIcmo21g5OFN1ERJwH\n/JDUTPFq9nNptjyxsBvLJoFjgZ9Legf4Gc0ngftId7DcDZwXEXeXOF6z3xYjYj7pLqSTSR8gpwD7\nZOtbOlbT4/6VdKfVPFJn9TdbOm9EPEa6c+Z3pCaqGaQObUgf8OeSOkznkvp4Ts+27QE8I2khcCFw\nSNaX8zbpWl1OamJaxCebW5qL/3BSZ+yULIYbgLVK/I63kO5wmpv1FxV8CXgoi2kscGJEzGzuAFmb\n/k3ACIqSTRnXv9gfSDcGPEm6A+zGZn63FkXEFOB80t/dq6Qk8UDRLhNId0K9Kun1QrHCOSJiAulv\n8UZS7eJztNy3Yx1AqY+xQgeXRpI66HoAl0fEmCbbTyF1TEEa/LcpsGZELGitrOVP0iDgBaBncUd5\nTrFcCcyKiJ/lGYdZV1TJIfc9SN/WRpJuwztU0qbF+0TEryNiSEQMIX1ja8iSRKtlzZroyMF9Zlak\nkk1Pw4DnImJmdvvddcCoEvsXd9C1tazlp1qepdta05SZtVMlh9MP5JNttLNovE/6EyT1JbX9HtvW\nspafrB28KqaiiIhmbwk1s+VXyRpFW77d7UsaMbqgHWXNzKyCKlmjmE3Rfe3Z61kt7HsIRfeFl1tW\nkhOKmVk7RETZ/XqVrFFMIk11MCi7r/1g0u19nyDp06SRpmPbWhZqe66qM888M/cYHH/+cXTH+Gs5\n9q4Qf1tVrEYREUskHU+637oHaW6WqZJGZ9svy3bdHxgfEe+3VrZSsZqZWcsqOjd8RNxOmtq4eN1l\nTZavJk1D3WpZMzPrfB6ZnaO6urq8Q1gujj9ftRx/LccOtR9/W1V0ZHalSYpajt/MLA+SiCrpzDYz\nsy7AicLMzEpyojAzs5KcKMzMrCQnCjMzK8mJwszMSnKiMDOzkpwozMysJCcKMzMryYnCzMxKcqIw\nM7OSnCjMzKwkJwozMyup5hPFu+/mHYGZWddW84niscfyjsDMrGur+UQxcWLeEZiZdW01nygeeijv\nCMzMuraaf8LdgAHB3Lmgsp/VZGbWvXW7J9xJ8NJLeUdhZtZ11Xyi2H57Nz+ZmVVSzSeK7bZzh7aZ\nWSVVNFFIGilpmqQZkk5tYZ86SU9IekZSQ9H6mZKeyrY90tI5XKMwM6usinVmS+oBTAd2BWYDjwKH\nRsTUon1WBf4N7BERsyStGRFvZtteBIZGxPwS54h33w3694d582CllSryq5iZdSnV1Jk9DHguImZG\nxGLgOmBUk30OA26MiFkAhSRRpNVfpG9f2HRTePzxjgjZzMyaqmSiGAi8UrQ8K1tXbCNgdUn3Spok\n6VtF2wK4O1t/dKkTuZ/CzKxyelbw2OW0afUCtgZGAH2BiZIeiogZwI4RMUdSf+AuSdMi4v6mB6iv\nr2fOHLjnHhg6tI66urqO/B3MzGpeQ0MDDQ0N7S5fyT6K7YD6iBiZLZ8OLI2IMUX7nAr0iYj6bPly\n4I6I+HuTY50JLIqI85usj4jg+eehrg5eKa6/mJlZs6qpj2ISsJGkQZJ6AwcDtzTZZyywo6QekvoC\n2wJTJPWV9CkASSsDuwNPt3SiDTaADz6AWbMq8nuYmXVrFUsUEbEEOB4YD0wBro+IqZJGSxqd7TMN\nuAN4CngY+ENETAHWAu6XNDlbf2tE3NnSuaTUT+HbZM3MOl7Nz/VUiP/cc+HNN+H881spZGbWzVVT\n01Onco3CzKwyukyNYtEiWGstmD8fevfOOTAzsyrWbWsU/frBhhvC5Ml5R2Jm1rV0mUQBad6n++7L\nOwozs66lyzQ9QeqjOPhgmDHDzU9mZi3ptk1PkDq0Bw+GK6/MOxIzs66jS9UowLUKM7PWdOsaBbhW\nYWbW0bpcjQJcqzAzK6Xb1yjAtQozs47UJWsU4FqFmVlLXKPIuFZhZtYxumyNAlyrMDNrjmsURbbb\nDjbfHC68MO9IzMxqV5euUQDMnAnbbAMPPACbbNI5cZmZVTPXKJoYNAj++7/hu9+FpUvzjsbMrPZ0\n+UQBcNxxEAEXX5x3JGZmtafLNz0VTJ8OO+4Ijz6aahlmZt2Vm55asMkmcPLJcMwxqXZhZmbl6TaJ\nAuCUU2DePLjqqrwjMTOrHd2m6angySdht93Sv2uvXaHAzMyqmJueWrHlljB6NBx7rJugzMzK0e0S\nBcAZZ8Czz8INN+QdiZlZ9atoopA0UtI0STMkndrCPnWSnpD0jKSGtpRtrxVXhCuugJNOgjff7Mgj\nm5l1PRXro5DUA5gO7ArMBh4FDo2IqUX7rAr8G9gjImZJWjMi3iynbFa+zX0UxX74Q3j9dfjzn9t9\nCDOzmlNNfRTDgOciYmZELAauA0Y12ecw4MaImAUQEW+2oexy+8UvYOJEuO22jj6ymVnXUclEMRB4\npWh5Vrau2EbA6pLulTRJ0rfaUHa59e0Ll18O3/sevP12Rx/dzKxr6FnBY5fTJtQL2BoYAfQFJkp6\nqMyyANTX13/8uq6ujrq6ujYFucsusNde8IMfwB//CCq7MmZmVhsaGhpoaGhod/lK9lFsB9RHxMhs\n+XRgaUSMKdrnVKBPRNRny5cDd5BqECXLZuuXq4+i4J13YNdd05Tkl10GPSuZPs3MclZNfRSTgI0k\nDZLUGzgYuKXJPmOBHSX1kNQX2BaYUmbZDrPKKnDPPTBnDnz1q/Dee5U6k5lZ7alYooiIJcDxwHjS\nh//1ETFV0mhJo7N9ppFqEE8BDwN/iIgpLZWtVKwA/frBLbfA6qvDiBFpqg8zM+uGU3i0JgJOPx1u\nvhnGj4f11+/Qw5uZ5a6tTU9ujW9Cgl/+Ms0DteOOMG5c6rswM+uunChacNJJMGBAaoa64QbYeee8\nIzIzy0e3nOupXIccAtdeCwceCDfemHc0Zmb5cI2iFSNGpL6KffaB115Ls86amXUn7swu0wsvwMiR\ncNBBcPbZHphnZrWrrZ3ZThRt8MYbsPfeHphnZrWtmgbcdTn9+3tgnpl1P04UbeSBeWbW3ThRtEOv\nXnDVVemW2eHD4aWX8o7IzKxy3MreTh6YZ2bdhRPFcvLAPDPr6tz01AEOOQSuu84D88ysa3KNooN8\n5SuNA/PmzoXjjvNYCzPrGjyOooO98ALsuy9suSVccgl8+tN5R2Rm9kkVG0eRPVjIWrHBBvDoo7Dq\nqrDVVvDvf+cdkZnZ8mk1UUjaQdIUYHq2vJWkiyseWQ3r2xcuvhh+8xs44ACor4clS/KOysysfcqp\nUVwEjATeBIiIyYDv7SnDfvvB44+nWsXOO8PMmXlHZGbWdmU1PUXEy01W+ftxmT772dTJ/dWvwrBh\nadpyM7NaUk6ieFnScABJvSWdAlT0+dVdzQorwCmnwB13pGaoI46AhQvzjsrMrDzlJIrvA8cBA4HZ\nwJBs2dpo661TU9SKK6aO7ocfzjsiM7PW+fbYnNx0E3z/+3DiiXDaadCjR94RmVl3UfHnUUg6jtSx\nfWNE5NpXUcuJAmDWLPjWt2DpUrjmGlhvvbwjMrPuoDOeRyHgy8A/2lHWiqyzDtx9N+y5J3zpS2mu\nKDOzalPRpidJI0m31/YALo+IMU221wFjgReyVTdFxNnZtpnAO8BHwOKIGNbM8Wu6RlHs0UfhsMNg\np53S+It+/fKOyMy6qqp5wp2kHsDvSGMwBgOHStq0mV3vi4gh2c/ZResDqMvWL5MkuppttoEnnoCI\n1Ok9aVLeEZmZJZWcPXYY8FxEzIyIxcB1wKhm9iuV1brVtHr9+sEf/wi/+AXstReMGZP6L8zM8lTJ\nRDEQeKVoeVa2rlgAO0h6UtI4SYObbLtb0iRJR1cwzqpz0EGpKerWW2G33WD27LwjMrPurNVpxiX1\nJo2l2Clb1QBcmtUSSimn8+BxYN2IeE/SnsDNwMbZtuERMVdSf+AuSdMi4v6mB6ivr//4dV1dHXV1\ndWWctvqtvz40NMC556amqEsvTaO7zczaqqGhgYaGhnaXb7UzW9IVpIRyNakp6FvAkoj4bivltgPq\nI2Jktnw6sLRph3aTMi8CQyNifpP1ZwKLIuL8Juu7TGd2KRMnwje/CbvuChdcACuvnHdEZlbLKtGZ\nvU1EHBER90TEhIg4ktT/0JpJwEaSBmW1koOBW5oEO0BKj/eRNIyUuOZL6ivpU9n6lYHdgafL/aW6\nmu23Tx3d778PQ4em12ZmnaWcRLFE0oaFBUmfp4xJAbPBeMcD44EpwPURMVXSaEmjs92+DjwtaTLp\nNtpDsvVrAfdn6x8Gbo2IO8v9pbqiVVaBP/0JfvYz2H13OP98d3SbWecop+lpBHAl8GK2ahBwVETc\nU9nQWtddmp6aevFF+MY30l1SV18Na6+dd0RmVksqMoWHpJWATUgd1NMj4oP2h9hxumuigPQgpLPP\nhssugz/8IT1+1cysHB2WKCSNiIgJkg4gJYjCQQMgIm5a3mCXV3dOFAUPPJA6uvfeG379a+jTJ++I\nzKzadWRnduF22H2zn32yn8KyVYEdd4TJk2H+/DRf1FNP5R2RmXU15fRRbBARL7S2Lg+uUTSKSDPQ\nnnxy6vA+4QRQtxrXbmbl6vA+CkmPR8TWTdY9FhFD2xljh3GiWNZzz6XJBddcE668EgYMyDsiM6s2\nHdb0JGnTrH9iVUlfk3RA9u+RwEodEKtVwIYbwr//DUOGpKfojRuXd0RmVutKdWaPAr5K6o8oHii3\nELguIh6sfHiluUZRWkMDHH54mvpjzBhYyendzKhM09MO1ZAUmuNE0br582H0aJg+Ha69FjbbLO+I\nzCxvlUgUfYDvkJ4p0YfG22O/vRxxdggnivJEpOnLTzsNjj0WTjkFPvWpvKMys7xUYq6na4ABpAcQ\nNQDrAovaFZ3lQoLvfCdNXf7CC7DRRvC738GHH+YdmZnVgnJqFJMjYitJT0XEFpJ6AQ9ExLadE2LJ\n2FyjaIfJk+HUU+H55+Gcc+DAA30rrVl3UokaReF759uSNgdWBfq3JzirDlttBePHp2dcjBkDw4bB\nvffmHZWZVatyEsXvJa0OnEG6+2kK8KuKRmWdYtddU3PUD3+Ymqb23NMju81sWSUThaQVgIURMT8i\n7ouIz0VE/4i4tJPiswpbYQU49FCYNi0lit12gyOOgJdfzjsyM6sWJRNFRCwFftxJsViOeveGE0+E\nGTNgvfXSgL1TTkm315pZ91ZO09Ndkk6RtK6k1Qs/FY/McrHKKmn68meegYULYZNN4Fe/Sk/XM7Pu\nqZy7nmaSjZ0oEhGxQaWCKpfveqq8adPgJz9JfRk//3ka6d2jR95RmdnyqMiDi6qVE0XnefBB+PGP\nYcEC+OUv0/MvfEutWW1yorCKiYB//jON8O7fPzVJbZv7aBoza6tKjKMwA1INYr/90i20hx8OBxwA\nX/86PPts3pGZWSU5UVib9eyZxl08+2x6qt4OO6Q5pF59Ne/IzKwSSk0zPpTGZ2Uvs1NEPF7Z0Frn\npqfqMG8e/M//wNVXw/HHe9JBs2rXYX0UkhpICaIPMBQojNndApgUEdsvX6jLz4miusycmR7Detdd\ncMYZcMwxaXyGmVWXDuujiIi6iNgFmANsHRFDs8efDsnWlRPMSEnTJM2QdGoz2+skvS3pieznjHLL\nWvUZNCg9t/uOO1Kn9+DB8Le/pU5wM6td5YyjmBIRg1tb10y5HsB0YFdgNvAocGhETC3apw74YUTs\n19ay2X6uUVSxu+9Os9SusEK6Q2qXXfKOyMygMnc9PSXp8uzb/y6S/gA8WUa5YcBzETEzIhYD1wGj\nmot5OcpaFWs66eBee3nSQbNaVE6iOIo0Y+xJwInZ66PKKDcQeKVoeVa2rlgAO0h6UtI4SYPbUNZq\nQPGkgyNHetJBs1rUs7UdIuJ94ILspy3KaRN6HFg3It6TtCdwM7BxW05SX1//8eu6ujrq6uraUtw6\nSWHSwSOPhPPOS5MOHnVUmh5kdc8cZlZRDQ0NNDQ0tLt8qbueboiIAyU93czmiIgtSh5Y2g6oj4iR\n2fLpwNKIGFOizIukO6w2Lqes+yhq19y5cNZZcOON8KMfwQknQJ8+eUdl1j105O2xn42IOZIGNbc9\nIma2EkhPUof0CNJdUo+wbGf2AOD1iAhJw4C/RcSgcspm5Z0oapwnHTTrfB15e+yc7N+ZwPvA5sAX\ngfdaSxJZuSXA8cB4Ur/G9RExVdJoSaOz3b4OPC1pMnARcEipsuX+UlY7vvAFuOkmuP56uOKK9JjW\n227zLbVm1aSc22MPAs4D7stW7QT8KCJuqHBsrXKNomvxpINmnaPDZ4+V9BSwa0S8ni33Bya01kfR\nGZwouqYlS9J0IGeeCdttB+ecAxu36RYHMyulEuMoBLxRtDyP5sc+mHUITzpoVl3KSRR3AOMlHSnp\nKGAccHtlwzKDvn1TM9T06bDSSrDZZqmWsXBh3pGZdS9lPbhI0gHAjqSxEfdHxD8qHVg53PTUvRQm\nHbz77jTp4NFHe9JBs/aoRB/FycB1ETF7eYPraE4U3dPkyamm8dxzqf/iwAP9WFaztqhEoqgHDgTe\nIs25dENEvLY8QXYUJ4rubcKE9BzvHj1gzBhPOmhWroo9M1vSlsBBpLEPsyJiRPtC7DhOFLZ0aRqD\n8dOfpjEZv/wlbJH7/Xhm1a2Sz8x+HXiVdNdT/7YGZlYJnnTQrPJaTRSSjs2edjcBWBP4bjWMoTAr\nVph0cMYMWG+9NOngj34E8+fnHZlZ7SunRrEu8IOIGBwRZ0bElEoHZdZeq6wCZ58NzzyTbqPdZJM0\nwvv99/OOzKx2ld1HUY3cR2GtKUw6OGlSmq3Wkw6aVbAzuxo5UVi5Hnww3SH19tupw3uvvXxLrXVf\nThRmLfCkg2ZJJe96MqtpEuy3X3pu9+GHwwEHpMF6zz6bd2Rm1c2Jwrqd4kkHhw5tnHTwtaoYRmpW\nfZworNtqOung4MGedNCsOU4U1u2tsQZccAE89hi88EJ69sX/+3/w4Yd5R2ZWHZwozDKDBsE118Dt\nt6dO78GD0wOUFizIOzKzfPmuJ7MWTJgAF10E990Hw4bBqFHpZ7318o7MbPn49lizDvbuu3DnnTB2\nLNx2G6yzTmPS2Gorj8ew2uNEYVZBS5akwXtjx6afxYvTLbejRsHOO0OvXnlHaNY6JwqzThIBU6Y0\nJo0ZM9IMtqNGwZ57pnmnzKqRE4VZTubMSZ3gt9wC998P22+fksa++8K66+YdnVmjqkoUkkYCFwE9\ngMsjYkwL+20DTAQOjogbs3UzgXeAj4DFETGsmXJOFFaVFi2C8eMb+zUGDWrs19hiC/drWL6qJlFI\n6gFMB3YFZgOPAodGxNRm9rsLeA+4sihRvAgMjYgWnyjgRGG1YMkSeOCBxiaqiMZ+jS9/2f0a1vmq\naa6nYcBzETEzIhaTnrc9qpn9TgD+DrzRzDZ/77Ka17Mn1NXBhRfC88+npqn+/eHUU2GtteCb34Qb\nbvCIcKtelUwUA4FXipZnZes+JmkgKXlckq0qrh4EcLekSZKOrmCcZp1Ggs03hzPOgEcfTRMUDh8O\nV1wBAwemTvBLL4XZs/OO1KxRzwoeu5w2oYuA0yIiJIlP1iCGR8RcSf2BuyRNi4j7mx6gvr7+49d1\ndXXU1dUtX9RmnWjgQPj+99PPO+809mv85Cfw+c839mt88Yvu17D2a2hooKGhod3lK9lHsR1QHxEj\ns+XTgaXFHdqSXqAxOaxJ6qc4OiJuaXKsM4FFEXF+k/Xuo7AuafHidOdUoV9jhRUak8aOO6bmLLP2\nqqbO7J6kzuwRwBzgEZrpzC7a/0rgnxFxk6S+QI+IWChpZeBO4KyIuLNJGScK6/IiUhNVIWm89FJ6\nQt+oUbDHHtCvX94RWq2pmkSRBbMnjbfHXhER50oaDRARlzXZtzhRbADclG3qCfwlIs5t5vhOFNbt\nvPJK6hAfOxYeeijdOVUYr7H22nlHZ7WgqhJFpTlRWHf39ttpttuxY+GOO9IU6YUmqsGD3a9hzXOi\nMOumPvwQ/vWvxiaq3r0bk8bw4dCjR94RWrVwojAzImDy5MakMWsW7L13Shq77w4rr5x3hJYnJwoz\nW8ZLLzX2azzySJrpttCvMWBA3tFZZ3OiMLOS3nqrsV9j/PjUl1FoovrCF/KOzjqDE4WZle2DD6Ch\nISWNW25JTVKFeai23979Gl2VE4WZtUsEPP54Y7/G3Lmwzz4paey2G/Ttm3eE1lGcKMysQ7z4YmO/\nxqRJsMsuKWnssw985jN5R2fLw4nCzDrc/PkwblxKGnfdleaeKvRrbLxx3tFZWzlRmFlFffAB3HNP\nY7/Gpz/dmDS23TbNS2XVzYnCzDrN0qWpWarQr/Hmm439GrvuCn365B2hNceJwsxyU3gw09ix8MQT\n8JWvNPZrrLlm3tFZgROFmVWFefPS88LHjoW774Ytt2xsotpww7yj696cKMys6vzf/8GECSlp/POf\nsPrqjUljm23cr9HZnCjMrKotXZqmESn0ayxYkKYS2W8/GDECVlop7wi7PicKM6spM2Y0Jo2nnkqd\n4KNGpUkM11gj7+i6JicKM6tZb7wBt96aOsQnTICtt25sotpgg7yj6zqcKMysS3j//dQJXujX+Mxn\nGpPG0KHr5CsFAAAMbElEQVTu11geThRm1uV89BE8/HBjE9XChalPY7/90i24K66Yd4S1xYnCzLq8\n6dMbk8Z//pMmLSz0a6y2Wt7RVT8nCjPrVl57LfVrjB2bpkz/0pcam6gGDco7uurkRGFm3da77zb2\na9x6K6y9dmPS2HprUNkfjV2bE4WZGalfY+LExiaq999vfChTXR307p13hPlxojAzayICpk1rTBrT\npsEee6SkseeesOqqeUfYudqaKCp6g5mkkZKmSZoh6dQS+20jaYmkA9pa1sysNRJsuimcdlqqZUyd\nmkaB/+UvsN56aZDf//4vvPxy3pFWp4rVKCT1AKYDuwKzgUeBQyNiajP73QW8B1wZETe2oaxrFGa2\nXBYtgjvvTIP8br0V1l23sV9jq626Zr9GNdUohgHPRcTMiFgMXAeMama/E4C/A2+0o6yZ2XLp1w++\n9jW46ip49VX4zW/SOI0DD0x3TZ1wQuogX7w470jzU8lEMRB4pWh5VrbuY5IGkhLAJdmqQvWg1bJm\nZh2tZ0/YaSc4//w0B9W4cenOqZ/+FAYMgMMOg+uvh3feyTvSztWzgscup03oIuC0iAhJAgpVobLb\nk+rr6z9+XVdXR11dXRtCNDNrngSbbZZ+fvITmDMnTSVy9dVw9NGw/faNo8PXXTfvaEtraGigoaGh\n3eUr2UexHVAfESOz5dOBpRExpmifF2hMDmuS+imOBl5vrWy23n0UZtbpFi6E8ePTHVTjxqUmqkK/\nxhZbVH+/RtXcHiupJ6lDegQwB3iEZjqki/a/EvhnRNxUblknCjPL2+LF8MADjY+AjWgcr/HlL0Ov\nXnlHuKyq6cyOiCXA8cB4YApwfURMlTRa0uj2lK1UrGZm7dWrF+yyC1x4YeMzw/v3h1NPhbXWgm9+\nE264IdVCapUH3JmZVcisWalfY+xYePBBGD481TT23RcG5nh7TtU0PXUGJwozqxXvvAN33JGSxu23\nw+c/n5LG/vvDF7/YubE4UZiZVbnFi+Ff/0pJ48034a9/7dzzO1GYmVlJVdOZbWZmXYMThZmZleRE\nYWZmJTlRmJlZSU4UZmZWkhOFmZmV5ERhZmYlOVGYmVlJThRmZlaSE4WZmZXkRGFmZiU5UZiZWUlO\nFGZmVpIThZmZleREYWZmJTlRmJlZSU4UZmZWkhOFmZmV5ERhZmYlVTRRSBopaZqkGZJObWb7KElP\nSnpC0mOSvlK0baakp7Jtj1QyTjMza1nFEoWkHsDvgJHAYOBQSZs22e3uiNgyIoYARwK/L9oWQF1E\nDImIYZWKM08NDQ15h7BcHH++ajn+Wo4daj/+tqpkjWIY8FxEzIyIxcB1wKjiHSLi3aLFfsCbTY6h\nCsaXu1r/Y3P8+arl+Gs5dqj9+NuqkoliIPBK0fKsbN0nSNpf0lTgduDEok0B3C1pkqSjKxinmZmV\n0LOCx46ydoq4GbhZ0peBa4BNsk3DI2KupP7AXZKmRcT9FYrVzMxaoIiyPs/bfmBpO6A+IkZmy6cD\nSyNiTIkyzwPDImJek/VnAosi4vwm6ysTvJlZFxcRZTftV7JGMQnYSNIgYA5wMHBo8Q6SPg+8EBEh\naWuAiJgnqS/QIyIWSloZ2B04q+kJ2vKLmplZ+1QsUUTEEknHA+OBHsAVETFV0uhs+2XAAcDhkhYD\ni4BDsuJrATdJKsT4l4i4s1KxmplZyyrW9GRmZl1DzY7Mbm0wX7WrpQGFkv4o6TVJTxetW13SXZKe\nlXSnpFXzjLGUFuKvlzQru/5PSBqZZ4ylSFpX0r2S/iPpGUknZutr4j0oEX9NvAeSVpL0sKTJkqZI\nOjdbX/XXv0Tsbbr2NVmjyAbzTQd2BWYDjwKHRsTUXANrA0kvAkMjYn7esbQmuyNtEfCniNg8W/cr\n4M2I+FWWqFeLiNPyjLMlLcR/JrAwIi7INbgySFoLWCsiJkvqBzwG7A8cRQ28ByXiP4jaeQ/6RsR7\nknoCDwCnAPtRG9e/udhH0IZrX6s1ilYH89WImuiMz25LfqvJ6v2Aq7PXV5P+41elFuKH2rn+r0bE\n5Oz1ImAqaUxSTbwHJeKH2nkP3ste9ib1ub5F7Vz/5mKHNlz7Wk0UZQ3mq3K1PqBwQES8lr1+DRiQ\nZzDtdEI219gV1dhs0JzsLsIhwMPU4HtQFP9D2aqaeA8krSBpMuk63xsR/6FGrn8LsUMbrn2tJora\nay9b1vBsjqs9geOy5pGaFKn9stbek0uAzwFbAXOB80vvnr+s2eZG4KSIWFi8rRbegyz+v5PiX0QN\nvQcRsTQitgLWAXaStEuT7VV7/ZuJvY42XvtaTRSzgXWLltcl1SpqRkTMzf59A/gHqTmtlryWtT0j\naW3g9ZzjaZOIeD0ywOVU+fWX1IuUJK7JZjOAGnoPiuL/cyH+WnsPACLibeA2YCg1dP3hE7F/qa3X\nvlYTxceD+ST1Jg3muyXnmMomqa+kT2WvCwMKny5dqurcAhyRvT4CuLnEvlUn+49d8FWq+PorDSi6\nApgSERcVbaqJ96Cl+GvlPZC0ZqFpRlIfYDfgCWrg+rcUeyHBZVq99jV51xOApD2Bi2gczHduziGV\nTdLnSLUIaBxQWLXxS7oW2BlYk9TO+d/AWOBvwHrATOCgiFiQV4ylNBP/mUAdqdodwIvA6KL25qoi\naUfgX8BTNDZvnA48Qg28By3E/xPSTA1V/x5I2pzUWb1C9nNNRJwnaXWq/PqXiP1PtOHa12yiMDOz\nzlGrTU9mZtZJnCjMzKwkJwozMyvJicLMzEpyojAzs5KcKMzMrCQnCqtqkj7KpkF+WtLfskFDVU/S\nZyTdlr3eMhv3s7zHvFTS9pK+kE0b/ZikDSQd2sy+a0t6LtunX9H6PpJukzQ1m/L73KJtJ0r61vLG\naV2PE4VVu/ciYkg2PfiHwPeKN2ZTJ3eKNp7reOCq7PUQYK8OCGFb0mSA+wM3RMRQ0mCvw4p3ykb9\n/wP4EWmw1d+bxP6riNg0i2t40bMIrgRO6IA4rYtxorBacj+woaSdJd0vaSzwTDY75nmSHslmwzwG\nPv5W/a+iGsnwbN+rsuWnJJ2U7dsgaWj2es3seSFIOlLSLZImAHdl06/8UelhMI9L2q+FWL8O3JZN\nMfNz4OAsjgOVHnhzcxbrxGz0bOFhMn9UesjP85I+/tCWtCnwLLAHcBLwfUn3AOcCX86OfVKWEP4K\n/DIi/hERvyVNNfEHgIh4PyLuy14vBh4nm3k5m2hwnqTNOuLNsq6j076NmS2P7ANwL2BctmoIsFlE\nvJQlhgURMUzSisADku4EvgbcERHnZPMNrZyV+2zRA4xWyY5XavbPIcDmEbFA0jnAhIj4djaHzsOS\n7i6a87/woJ6PCusk/Yz0kKrCk93+F3gsIvZXmoX0T9k5ADYGdgFWAaZLujgiPiLNMnx7RNwu6VKy\nh85I2hk4JSL2LYq3+DURcXEL13TVbN/i+aMeAXYC/tNcGeueXKOwatdH0hOkpxjOBP5IeuDKIxHx\nUrbP7sDh2X4PAasDG2ZljlJ6mt0W2dTWzwMbSPqtpD2AT0zX3YK7iubw2R04LTvXvcCKfHImY4D1\nSVM3F4hPPiRmOHANQETcC6yRNRcFcFtELI6IeaTZSAvPONgduKPJMYv/bZMs8V4L/CYiZhZtmgMM\nas8xretyjcKq3fvZczs+lioHvNtkv+Mj4q6mhZWe87EPcJWkCyLiGklbkppwvkd6HOd3gCU0fnFa\nqclhmp7raxExo5W4iz/Am6uptPQB/2HR64+AnpL6AqtGxKutnLMtfg9Mz5qmmsblCeDsE1yjsK5g\nPHBsocNW0sZZX8J6wBsRcTlpzv2tJa0B9IiIm4Cf0djkMxP4Uvb6662c68TCgqQhzezzElA8jfNC\n4FNFy/cD38jK12UxLqT55CFSU9Q9LcTT9NitkvQLUtPWfzWzeW3StTD7mBOFVbvmvt027U+4HJgC\nPC7padLTu3qSphKfLOlxUs3hIlLH7b1Z09E1pOm6AX5N6iB+HFij6PhNz3U20CvrCH8GOGuZ4NI3\n/55KzxqB1EQ1uNCZDdQDQyU9CZxD4zMNmp6r8HpPPtnsVLztSeCj7HbZk5rG0pSkdUhTfG9Kul5P\nSPpO0S7DSInM7GOeZtysAiTVA1Mj4voOONZjwLCsU7tiso79CRGxTSXPY7XHicKsAiT1B66OiI4Y\nP9EpJJ0IzI+IP+cdi1UXJwozMyvJfRRmZlaSE4WZmZXkRGFmZiU5UZiZWUlOFGZmVpIThZmZlfT/\nAaONSfy0Nv4aAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5b0e130>"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3-pg321"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#find the value compression index\n",
      "import math\n",
      "%matplotlib inline\n",
      "import warnings\n",
      "warnings.filterwarnings('ignore')\n",
      "#calculate Compression index\n",
      "e11=0.9\n",
      "e21=0.8\n",
      "T2=4.\n",
      "T1=2.\n",
      "Cc= (e11-e21)/math.log10(T2/T1) ## from loading branch\n",
      "e1=0.67\n",
      "e2=0.655\n",
      "Cs=(e1-e2)/math.log10(T2/T1)\n",
      "k=Cs/Cc\n",
      "T3=12.\n",
      "e3=e11-Cc*math.log10(T3/T1)\n",
      "print'%s %.2f %s'%('Compression index Cc= ',Cc,'')\n",
      "print'%s %.2f %s'%(' Cs/Cc = ',k,'')\n",
      "print'%s %.2f %s'%(' e3 = ',e3,'')\n",
      "#calculate the value of Cv\n",
      "%matplotlib inline\n",
      "import warnings\n",
      "warnings.filterwarnings('ignore')\n",
      "import math\n",
      "from math import log\n",
      "import numpy\n",
      "from math import tan\n",
      "import matplotlib\n",
      "from matplotlib import pyplot\n",
      "#given\n",
      "p=numpy.array([.25,.5,1.,2.,4.,8.,16.,8.,4.,2.])\n",
      "e=numpy.array([1.03,1.02,0.98,0.91,0.79,0.71,0.62,0.635,0.655,0.67])\n",
      "e1=.9\n",
      "e2=.8\n",
      "sig1=4.\n",
      "sig2=2.\n",
      "#calculations\n",
      "Cc=(e1-e2)/log(sig1/sig2)\n",
      "\n",
      "#results\n",
      "print 'The value of Cv (cm^2/sec) = ',Cc\n",
      "pyplot.plot(p,e)\n",
      "pyplot.xlabel('Pressure (ton/ft^2)')\n",
      "pyplot.ylabel('void ratio ,e')\n",
      "pyplot.title('Graph of pressure vs void ratio')\n",
      "pyplot.show()\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Compression index Cc=  0.33 \n",
        " Cs/Cc =  0.15 \n",
        " e3 =  0.64 \n",
        "The value of Cv (cm^2/sec) =  0.144269504089\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcneP9//HXWxKRxdoQRAglLSkqqVhaTEUJraUbtdP+\nVKuqlCJUjSrhq9Witq99j5ZSbSmRGuJriSUhmsQekiDWEIQs8/n9cd0jJ5NZzkzOmfucmffz8ZjH\nnHv/zDlzzudc13Vf16WIwMzMrDnL5R2AmZlVNicKMzNrkROFmZm1yInCzMxa5ERhZmYtcqIwM7MW\nOVFY2UiqlXRdic7VX9IDkj6QdE4pzmnFk3SnpAOb2TZIUr2ksn2eSLpY0q/LdX5rWfe8A7COI+kH\nwDHAEOAj4GXgmoi4uEyXLGUnnR8Db0bESiU8pxUpInbrqGtJOgT4UURsV3D9n3bU9W1pLlF0EZKO\nBf4EnA30j4j+wE+Ar0pavpljlvX/Q8t4fKH1gKmlOJGk3L8gSeqWdwx5qITn3tohIvzTyX+AlYEP\ngW+3st/VwMXAndn+OwLfBCYC7wOvAqcW7D8IqAcOA2YBrwHHFmw/FbgZuAb4AHgGGNbC9bcFHgPm\nABOAbQrimg98CswFdmwm9kuAe7Jr1QHrFmyvB44AngdezNZ9C5gEvAf8H7Bpwf4nADOzc01ruCYw\nHHg8ez7eAP6Qra8BZjSKaXrBcbXALcB12bE/zF6XK7LnbSZwOrBcE3/b2sDHwKoF67YA3gK6ARsC\n92fP21vAmGae37uAnzVa9xSwV0vPf7atjvQtn+yav8+u9SLws+z5XSr2gufheOBpYF52/InAC9nz\n+9+CGDbO9lmYvdbvFry+pxec87DstXwH+DuwVt7vs878k3sA/umAFxlGAguaeyMX7Hd19iHR8AHd\nE9gBGJItb5p9OO6ZLQ/KPiBuAHoBXwLeBEZk22uzN/1IUuniTODhZq69GukDe39SSfcHwLsNH47A\nVcBvW4n9A+BrwPKk0tP4gu31wN3AKtnftQUwG9gyi+0gUlVcD+ALpKS4ZnbsusAG2eOHgf2zx72B\n4dnjGpZOFC+zZKKYD+yRLa8A3EZKzL2A1YFHgR838/eNA/5fwfI5wEXZ45uAUdnj5YFtmznHgcCD\nBcubZM95jyKe//uAH2aPf0Iq3Q0AVs22LaLlRPFktn/PbN33Cp7fvUlfTPpnywcXvnaNX3/SF5i3\ngC9nf+/5wP15v88684+rnrqGfsDbEVHfsELSQ5Lek/SxpK8V7Ht7RDwMEBGfRsT9EfHfbHkyMIaU\nPAqdFhHzIuIZ0ht634Jt4yPi35He4dcDmzcT4zeBZyPihoioj4gxpG/yexTs01pV1j8j4sGImA+c\nDGwjaUDB9tERMSciPiW1eVwaEY9Fci2pxLIN6dtsT2CIpB4R8WpEvJSdYz6wkaR+EfFxRExoJaZC\nD0XEHdnjlYFdgWOy5+4tUnL7QTPH3kj2vEoSsE+2riGmQZIGRMT8iHiomXPcDnxZ0sBseX/g1ohY\nQHHPf4O9gT9GxKyIeI/0BaCl1yaA87P9PwWIiFsi4o3s8V9IpYOtsv1be533B66IiEnZaz2K9Fqv\n28px1k5OFF3DO0C/wjaHiNg2IlbNtjWsD2BG4YGStpJ0n6Q3Jc0BDgc+1+j8hce8SqoqaTC74PHH\nwArNtH2snR1b6JVG52pJkKpv0kLER6RvxIXHF8a5HnBslizfk/QesA6pCuNF4GhSKWC2pJskrZUd\n9yNgMDBV0gRJ3ywyPgrjy67fA3i94PqXkEoWTfkb6cNwTWB7oD4iHsy2HU/6cJ0g6RlJhzZ1goiY\nC/yLxYn8B6TSILTt+V+LpV/z1jT+vzpI0sSCv/1LLP1/1Zy1stiAz17rd0glFisDJ4qu4WHSt+W9\n2nHsjaRvoutExCqkD7PG/zfrNno8qx3XmUX68Cy0XhvOJWDgZwtSX1J1ymsF+xTehfUqcEZErFrw\n0zcibgaIiJsi3XWzXnbc2dn6FyJiv4hYPVt3i6RepLvIehdcvxtLf+gXXn8G6TX5XMH1V46ITZv6\n47Jv7veQShL7kaqbGrbNjogfR8QAUiK/SNIGzTxPNwH7StoGWCEi7svWt+X5f52lX/PWfPa3S1oP\n+F9S28Zq2ReWZ1hckmjtbrnXSNWeDefrQ0oy7fm/syI4UXQBETEHOI30AfJdSStKWk7Sl4E+Bbs2\nVeTvC7wXEfMlDSd9SDV+I/9aUi9JQ4BDSA3YbXUnMFjSvpK6S9oH+CLwzxZia2w3SQ13cZ1Oag9p\n7sPjMuAnkoYr6SPpm5L6ShosaUdJPUkf5p+Q6uCRdICkhgTwPum5qAeeI5WWdpPUA/g1qfqqSRHx\nOumD/9yC1+PzkrZv4e+7kVR//10WVzsh6fuS1skW5xTE1JQ7SQngNFI1YuH6lp7/Qn8BjpI0QNKq\npIbptuiTxfg2sFxWAvpSwfbZwDrZ89hALP4fuAk4VNLm2Wt0JvBIRBRTsrF2cKLoIiLiHOCXpGqK\nN7KfS7Llhxt2Y+kkcATwW0kfAKfQdBK4n3QHy73AORFxbwvna/LbYkS8S7oL6VjSB8hxwLey9c2d\nq/F5byTdafUOqbH6gOauGxFPkO6c+TOpiup5UoM2pA/40aQG09dJbTyjsm27AM9Imgv8EfhB1pbz\nPum5upxUxfQhS1a3NBX/QaTG2ClZDH8F1mzhb7yDdIfT61l7UYOvAI9kMf0dOCoipjd1gqxO/2/A\nCAqSTRHPf6HLSDcGPEW6A+zWJv62ZkXEFOAPpP+7N0hJ4sGCXcaR7oR6Q9KbDYc1XCMixpH+F28l\nlS7Wp/m2HSsBpTbGMp1cupLUSPZmc0VqSeeTGvU+Bg6JiInZ+umku1gWAQsiYnjZArV2kTQIeAno\nXthQnlMsVwEzI+KUPOMw64zKXaK4inRrZJMk7QZsGBEbke5CKewhHEBNRGzhJGFFKGXnPjMrUNZE\nERHjSfdmN2cPUmcsIuJRYBVJ/Qu2+81f+SplLt3WqqbMrJ3y7k4/gCXrcWdm62aT3vT3SlpEut/9\nshzisxZk9eAVMRRFRDR5S6iZLbu8EwU0X2r4WkS8lt1hMlbStKyEYmZmHSjvRDGLgnvfSR2eZgFE\nxGvZ77ck3UYaY2eJRCHJVQ1mZu0QEUVX7ed9e+wdZLckStoamBMRsyX1lrRitr4PsDMwuakTLMv4\nJR31c+qpp+Yeg+N0nNUao+Ms/U9blbVEIekm0rhA/STNIN3j3gMgIi6NiDuzDkovkHq2NtQzrwn8\nLQ1pQ3fghoi4p5yxmplZ08qaKCJi3yL2ObKJdS+RRoY0M7Oc5V311CXU1NTkHUJRHGdpVUOc1RAj\nOM68lbVndrlJimqO38wsD5KIKmrMNjOzCudEYWZmLep0iWLevLwjMDPrXDpVonj7bfjiF2FCWyan\nNDOzFnWqRNGvH/z5z/DNb8L99+cdjZlZ59CpEgXA7rvDmDHwve/BXXflHY2ZWfXrdIkCYMQIuOMO\nOOQQuOWWvKMxM6tueQ8KWDbbbAN33w277goffQQHH5x3RGZm1anTd7ibNg123BFuvhm2266DAjMz\nq2Bt7XDX6RMFwDXXwGWXwfjxIM+ZZ2ZdnHtmN+GAA+C99+DOO/OOxMys+nSJRNGtG/zud3DyyVBf\nn3c0ZmbVpUskCoC99oKePVNbhZmZFa9LtFE0GDcODj8cpk6FHj3KGJiZWQWrqDYKSVdKmi2pyWlM\ns33Ol/S8pKckbVGwfqSkadm2E0oRz4gRMGgQXHllKc5mZtY1lLvq6SpgZHMbJe0GbBgRGwE/Bi7O\n1ncD/pwduwmwr6SNSxHQmWfC6ad78EAzs2KVNVFExHjgvRZ22QO4Jtv3UWAVSWsCw4EXImJ6RCwA\nxgB7liKm4cPTz5//XIqzmZl1fnk3Zg8AZhQsz8zWrd3M+pL43e/gnHPg/fdLdUYzs86rEobwWKYu\ncLW1tZ89rqmpKWrO2k02gd12g9//PlVDmZl1ZnV1ddTV1bX7+LLf9SRpEPCPiNi0iW2XAHURMSZb\nngbsAKwP1EbEyGz9KKA+Is5udHy758yePh2GDYMpU6B//3adwsysKlXUXU9FuAM4CEDS1sCciJgN\nPA5sJGmQpOWBfbJ9S2bQINh//9S4bWZmzStriULSTaQSQj9gNnAq0AMgIi7N9mm4u+kj4NCIeDJb\nvyvwJ6AbcEVEjG7i/O0uUQDMnp2qoZ58EtZbr92nMTOrKh4UsI1+/WuYNQuuuqpEQZmZVTgnijaa\nMwcGD4a6ulS6MDPr7KqtjSJ3q6wCxx0Hp5ySdyRmZpWpy5coAD7+GDbaCG6/HbbcsgSBmZlVMJco\n2qF371SiOOmkvCMxM6s8ThSZH/0IXn4Z/vOfvCMxM6ssThSZHj3S0B7HHguLFuUdjZlZ5XCiKLDP\nPrDyynDxxXlHYmZWOdyY3ch//ws1NfDMMx7aw8w6J/ejKIHjjoO334arry75qc3McudEUQJz58LG\nG8OYMfC1r5X89GZmufLtsSWw4orwhz/Az34GCxfmHY2ZWb6cKJqx997Qrx9ceGHekZiZ5ctVTy2Y\nOhW22w4mT4a11irbZczMOpTbKErshBPS6LLXX1/Wy5iZdRgnihL78MM0qux118EOO5T1UmZmHcKN\n2SXWty+ce25q2F6wIO9ozMw6XlkThaSRkqZJel7SCU1sX1XSbZKekvSopCEF26ZLelrSREkTyhln\na777XVh7bbjggjyjMDPLR9mqniR1A54FdgJmAY8B+0bE1IJ9zgE+iIjTJX0BuDAidsq2vQwMi4h3\nW7hG2aueGjz3HGy7LTz1FAwY0CGXNDMri0qqehoOvBAR0yNiATAG2LPRPhsD9wFExLPAIEmrF2wv\n+g8pt8GD4fDDU69tM7OupJyJYgAwo2B5Zrau0FPAdwAkDQfWA9bJtgVwr6THJR1WxjiLdtJJ8NBD\nHorczLqW7mU8dzF1QmcB50maCEwGJgINg3x/LSJey0oYYyVNi4jxjU9QW1v72eOamhpqamqWNe5m\n9ekDf/oTHHkkTJoEyy9ftkuZmZVMXV0ddXV17T6+nG0UWwO1ETEyWx4F1EfE2S0c8zKwaUR82Gj9\nqcCHEfGHRus7rI2iQQR885tphNnjj+/QS5uZlUQltVE8DmwkaZCk5YF9gDsKd5C0craNrHrp/oj4\nUFJvSStm6/sAO5NKHLmT4Pzz4eyzYcaM1vc3M6t2ZUsUEbEQOBK4G5gC3BwRUyUdLunwbLdNgMmS\npgG7AL/I1vcHxkuaBDwK/DMi7ilXrG214YapX8Wxx+YdiZlZ+blndjvNmwdDhsAll8DOO+cSgplZ\nu1RS1VOn1qsXnHce/Pzn8OmneUdjZlY+ThTLYPfdU/+Kc8/NOxIzs/Jx1dMyevll2HJLePJJWHfd\nXEMxMyuKq5462Prrw1FHwdFH5x2JmVl5OFGUwPHHpzGg7ror70jMzErPiaIEVlghjSx71FHwySd5\nR2NmVlpOFCWy227wpS/B73+fdyRmZqXlxuwSmj4dhg2Dxx9PbRdmZpXIjdk5GjQIfvlLN2ybWefi\nRFFixx0HU6fCP/+ZdyRmZqXhRFFiPXsubtieNy/vaMzMlp0TRRnssgsMHZpGmDUzq3ZuzC6TGTNg\niy3g0Ufh85/POxozs8XcmF0hBg6EX/0qVUFVaC4zMyuKE0UZHXMMvPgi/P3veUdiZtZ+rnoqs/vv\nh333TUN8rL563tGYmVVY1ZOkkZKmSXpe0glNbF9V0m2SnpL0qKQhxR5bLXbYAQ44AA47zFVQZlad\nypYoJHUD/gyMJE15uq+kjRvtdhLwZERsDhwEnNeGY6vG6aenXttXXJF3JGZmbVfOEsVw4IWImB4R\nC4AxwJ6N9tkYuA8gIp4FBklao8hjq0bPnnDDDXDiifD883lHY2bWNuVMFAOAGQXLM7N1hZ4CvgMg\naTiwHrBOkcdWlSFD4De/SdVQCxbkHY2ZWfG6l/HcxdTInwWcJ2kiMBmYCCwq8lgAamtrP3tcU1ND\nTU1Nm4LsSEceCf/6F5xxBhSEbWZWVnV1ddTV1bX7+LLd9SRpa6A2IkZmy6OA+ohotr+ypJeBTYEv\nFXNsNdz11Nhrr6WOeLffDttsk3c0ZtYVVdJdT48DG0kaJGl5YB/gjsIdJK2cbUPSYcD9EfFhMcdW\nq7XXhosvhgMPhLlz847GzKx1ZUsUEbEQOBK4G5gC3BwRUyUdLunwbLdNgMmSpgG7AL9o6dhyxdrR\nvvMd2H771CHPzKzSucNdTubOhS9/Oc2I9+1v5x2NmXUlba16cqLI0UMPpdLFxImw1lp5R2NmXUUl\ntVFYK7bdFn78Yzj0UPfaNrPK5USRs1NOgXffhQsvzDsSM7OmFV31JKl3RHxc5njapNqrnho891wq\nXTzwAGyySd7RmFlnV/KqJ0nbSpoCPJstf1nSRcsQozUyeDCceSbsvz/Mn593NGZmSyqm6ulPpMH5\n3gaIiEnADuUMqis67LA02dFvfpN3JGZmSyqqjSIiXm20amEZYunSJLj8crj22jSHhZlZpSgmUbwq\n6asAkpaXdBzQaTq/VZI11oDLLoODDoI5c/KOxswsabUxW9LqpHkidgIE3AMcFRHvlD+8lnWWxuzG\njjgCPvgArr8+70jMrDNyh7tO4OOPYehQOPXUNI2qmVkplT1RSPoZqWH71mxMptx01kQB8PjjsNtu\n6fe66+YdjZl1Jh3RM1vAdsBt7TjWivSVr8DRR8PBB0N9fd7RmFlX5qqnCrZoEdTUwJ57wnHH5R2N\nmXUWbqPoZKZPhy23hHvvhc03zzsaM+sMPChgJzNoEJx7buq1PW9e3tGYWVdU1kQhaaSkaZKel3RC\nE9v7Sfq3pEmSnpF0SMG26ZKeljRR0oRyxlnpDjgAhgyBUaPyjsTMuqJi+lEsD/wU2D5bVQdcEhEL\nWjmuG2l8qJ2AWcBjwL6FM9VJqgV6RsQoSf2y/ftHxMJs/uxhEfFuC9fo9FVPDd59N1U9XXEF7Lxz\n3tGYWTUrR9XTxcBQ4ELgImBYtq41w4EXImJ6llTGAHs22ud1YKXs8UrAO41uuS36D+nsVlsNrr4a\nfvhDeCf3ro5m1pV0L2KfLSNis4LlcZKeLuK4AcCMguWZwFaN9rkM+I+k14AVgb0LtgVwr6RFwKUR\ncVkR1+zURoyAffZJkx3dcksaH8rMrNyKKVEslLRhw4Kkz1PcoIDF1AmdBEyKiLWBLwMXSlox2/bV\niNgC2BX4maTtijhfp3fGGfD883DNNXlHYmZdRTElil+RvvW/nC0PAg4t4rhZwMCC5YGkUkWhbYEz\nACLixewaXwAej4jXs/VvSbqNVJU1vvFFamtrP3tcU1NDTU1NEaFVrxVWgBtugB13hO23hw02yDsi\nM6t0dXV11NXVtfv4ovpRSFqB9AEewLMR8WkRx3QnNU6PAF4DJrB0Y/a5wPsRcZqk/sATwGbAJ0C3\niJgrqQ9pIMLTIuKeRtfoMo3Zjf3xj6n66f77oXsx6d7MLFOyDneSRkTEOEnfJSWIhpMGQET8rYhg\ndiVNfNQNuCIiRks6PDv+0uxOp6uAdUnVYKMj4kZJGwAN5+8O3BARo5s4f5dNFPX16e6nmhr49a/z\njsbMqkkpE8VpEXGqpKtpor0hIoqpfiqrrpwoAGbOhGHD4B//gOHD847GzKpFyYfwkLRBRLzU2ro8\ndPVEAfDXv8LJJ8PEidCnT97RmFk1KEeieDIihjZa90REDGtnjCXjRJEcfDD06gWXXJJ3JGZWDdqa\nKJptBpW0MbAJsIqk75DaKILUMW6FZQ3USueCC1Kv7X/8A3bfPe9ozKyzael+mcHA7sDK2e8Gc4HD\nyhmUtc1KK8G118Lee8OkSdC/f94RmVlnUkzV07YR8VAHxdMmrnpa0sknw1NPpZKFe22bWXPK0UbR\nC/gRqRqqF4tvj/3hMsRZEk4US5o/H7bdFv7f/4Of/CTvaMysUpVjUMDrgP7ASNLIsQOBD9sVnZXV\n8svD9dfDKafAs8/mHY2ZdRbFlCgmRcSXJT0dEZtJ6gE8GBGNB/jrcC5RNO3ii9Nw5A8/DD165B2N\nmVWacpQo5me/35e0KbAKsHp7grOO8ZOfpAbt007LOxIz6wyKSRT/K2k14NfAHcAU4H/KGpUtEwmu\nvDKVKh58MO9ozKzatTicnKTlgLnZLHP3A+t3SFS2zPr3h0svhQMPTHdCrbRS68eYmTWlmDaKiuiF\n3RS3UbTu8MPh00/T7HhmZlCeNoqxko6TNFDSag0/yxCjdaBzz4WHHkpjQpmZtUcxJYrpLD16bERE\n7lPmuERRnAkT0tAeTz4JAwbkHY2Z5a3kHe4qmRNF8U4/HR54AO6+G5YrphxpZp1WOaqerBMYNQo+\n+gjOPz/vSMys2pQ1UUgaKWmapOclndDE9n6S/i1pkqRnJB1S7LHWNt27w3XXwRlnwOTJeUdjZtWk\nbFVPkrqR5szeCZgFPMbSc2bXAj0jYlQ2LeqzpOFCorVjs+Nd9dRGV12V5tueMAFW8GDxZl1Syaqe\nJA2TNLTg9xI/RZx7OPBCREyPiAXAGGDPRvu8Tprfguz3OxGxsMhjrR0OOQQ22sjzbJtZ8VrqcPcH\n0jf7XsAw4Ols/WbA48A2rZx7ADCjYHkm0Hh8qMuA/0h6DVgR2LsNx1o7SKkj3uabw667wogReUdk\nZpWu2RJFRNRExNeB14ChETEs63i3RbauNcXUCZ0ETIqItYEvAxdKWrGI42wZ9OuXhvg49FB47728\nozGzStfiEB6ZL0bEZ82fEfFMNk1qa2aRhiRvMJBUMii0LXBGdt4XJb0MfCHbr7VjAaitrf3scU1N\nDTU1NUWEZrvsAt/+dhpAcMwYT3Rk1pnV1dVRV1fX7uOL6XA3hjT/xPWkebP3A/pGxL6tHNed1CA9\nglQCmcDSjdnnAu9HxGmS+gNPkKq2Pmjt2Ox4N2Yvg3nz4CtfSbfOHnBA3tGYWUcp1wx3PwW2y1Y9\nAFwcEZ8UEcyuwJ+AbsAVETFa0uEAEXFpdqfTVcC6pGqw0RFxY3PHNnF+J4plNGkSfOMb8NhjMGhQ\n3tGYWUdwz2xrs3POSfNs33cfdOuWdzRmVm4lSxSS/hoR35fUVPesiIjN2htkqThRlMaiRalU0b17\nmkZ1u+1aP8bMqlcpE8XaEfGapEFNbY+I6e0JsJScKErn00/h2mvh7LNhzTXhpJPS7bNu5DbrfMpS\n9ZQ1NA8n3fI6ISLebH+IpeNEUXoLF8Itt8Do0SlJnHgifP/7rpIy60zK0Zi9N3AOaYY7gO2BX0VE\n7jMcOFGUTwTceSeceSa8+SYcfzwcdBD07Jl3ZGa2rMqRKJ4GdmooRUhaHRjnNoquIQLGj08ljMmT\n4Ze/hB//GPr2zTsyM2uvcgwzLuCtguV3snXWBUiw/fZw111wxx3wyCOw/vpw2mnw7rt5R2dmHaGY\nRPFv4G5Jh0g6FLgTuKu8YVklGjoU/vIXePBBePVV2HBDOPZYmDUr78jMrJyKbcz+LvA1UmP2+Ii4\nrdyBFcNVT/maMSPNyX3NNfC976V2jA03zDsqM2tNOdoojgXGRETFfW90oqgMb7+dZs676KLUH+PE\nE9PotGZWmcrRRrEicI+kByUdmd0qa/aZfv3gt7+Fl15K1VO77grf+hb83//lHZmZlULRQ3hI2pw0\nX8T3gJkRkftMBi5RVKZPPoGrr4b/+R9YZ53UeW+XXdx5z6xSlKNE0eBN4A3SXU+rtzUw6zpWWCEN\nX/7cc+n3r34Fw4alhvBFi/KOzszaqpg2iiNIJYk1gL8CN0fElA6IrVUuUVSH+nr4179S57133oET\nToADD4Tll887MrOuqRyN2aNJyWHSsgZXak4U1SUC7r8/dd6bMiXdWnvYYdCnT96RmXUtHmbcqsIT\nT6SE8cAD8POfw5FHwqqr5h2VWddQzjYKs5IZNiwNPvjAA+luqQ03TG0Zr7+ed2Rm1lhZE4WkkZKm\nSXpe0glNbD9O0sTsZ7KkhZJWybZNl/R0tm1COeO0/Hzxi3DVVTBxIsyfD0OGpAbwl17KOzIza1C2\nqidJ3UjzXu8EzAIeo4l5rwv2/xZwdETslC2/DAyLiGZHFHLVU+fz1ltw3nlwySXpltoTT4RNN807\nKrPOpZKqnoYDL0TE9IhYAIwB9mxh//2Amxqt8533Xczqq8PvfpdKFJttBjvvDHvsAQ8/nHdkZl1X\nORPFAGBGwfLMbN1SJPUGdgFuLVgdwL2SHpd0WNmitIq00krpNtqXXoKRI2G//eDrX4d77kl3T5lZ\nx+lexnO35e28O/BgRMwpWPfViHg9m/9irKRpETG+8YG1tbWfPa6pqaGmpqad4Vol6tULjjgi3UZ7\n881wzDFp3ahR8O1vw3K+HcOsVXV1ddTV1bX7+HK2UWwN1EbEyGx5FFAfEWc3se9tpL4aY5o516nA\nhxHxh0br3UbRxdTXwz/+kTrvvf9+KnXsv78775m1RSW1UTwObCRpkKTlgX2AOxrvJGll0vSqfy9Y\n11vSitnjPsDOwOQyxmpVYrnlYM890wRKF10EN96Ybq09/3z4+OO8ozPrnMqWKCJiIXAkcDcwhVRi\nmCrpcEmHF+y6F3B3RMwrWNcfGC9pEvAo8M+IuKdcsVr1kWDHHWHsWLj1VqirSzPvnXEGzJnT6uFm\n1gbumW2dxpQpcPbZ8M9/pjaNo4+GNdfMOyqzylNJVU9mHWqTTdJse08+CR99lJaPOAJefjnvyMyq\nmxOFdTrrrQcXXABTp8Iqq8CWW6bRav/737wjM6tOThTWafXvn+6OevHFVLoYMQL22gsefTTvyMyq\ni9sorMuYNw+uvDLNvLfhhqkvxogRnnnPuh4PM27WigUL4Kab4Kyz0lwYJ52Ubrl15z3rKpwozIpU\nXw9//3uaF+PDD1Pnvf32gx498o7MrLycKMzaKALGjUsJ48UX4bjj4Ec/SkOFmHVGvj3WrI0k2Gmn\nlCxuvhnuvTd13hs9Og0TYtbVOVGYFdhqK7j99pQ0pk6FDTZIjd6zZ+cdmVl+nCjMmjBkCFx7LTz+\nOHzwAWx9vXmZAAARIElEQVS8cZrX+5VX8o7MrOM5UZi1YP314cIL0/AgffvC0KFw8MFp2ayrcKIw\nK8Kaa6bbaV98EQYPTpMofec78NhjeUdmVn5OFGZtsMoqcPLJafyor38dvvvd1BD+n/945j3rvHx7\nrNkymD8/zYlx1lmw8sqp4XuPPdx5zyqb+1GY5WDRonS31OjRaaiQE05Ivb1XXjnvyMyW5kRhlqOI\n1A/jj3+E8eNh003hG99I1VNbbeUpW60yVFSikDQS+BPQDbi88XzZko4D9s8WuwMbA/0iYk5rx2bH\nO1FYxZo3Dx56KCWOsWPhuedgu+0WJ44hQzwgoeWjYhKFpG7As8BOwCzgMWDfiJjazP7fAo6OiJ2K\nPdaJwqrJO+/AffctThwff5xGr/3GN9LvddbJO0LrKiopUWwDnBoRI7PlEwEi4qxm9r8RGBcRVxR7\nrBOFVbOXXko9wMeOTXdNrb764tLGDju4fcPKp5LGehoAzChYnpmtW4qk3sAuwK1tPdasWm2wQZrb\n+y9/gTffhBtuSKWKCy5Iv7fdFk49NbV1zJ+fd7TWlXUv47nb8lV/d+DBiJjT1mNra2s/e1xTU0NN\nTU0bLmtWGZZbLvX6HjoUjj9+yfaNY45x+4Ytm7q6Ourq6tp9fDmrnrYGaguqj0YB9c00St8G3BwR\nY9pyrKuerKtw+4aVUiW1UXQnNUiPAF4DJtB0g/TKwEvAOhExr43HOlFYl+T2DVsWFZMosmB2ZfEt\nrldExGhJhwNExKXZPgcDu0TEfq0d28T5nSisy6uvh0mTFpc2HnnE/TesZRWVKMrNicJsae6/Ya1x\nojCzJbh9wxpzojCzFrl9w5wozKxoDe0bY8emEofbN7oGJwoza7eG9o2GxOH2jc7JicLMSqahfaMh\ncbh9o3NwojCzsnnppZQw7r3X7RvVzInCzDqE2zeqlxOFmeXC7RvVw4nCzCqC2zcqlxNFhZk4EaZO\nhc02gy98AXr0yDsis3y4faNyOFFUmHHj4JJLYPJkeOUVGDw41eNuttni32uv7SK5dS1u38iXE0UF\nmzcPpkyBp59OiePpp9PPwoVLJo5NN4UvfQn69s07YrOO4faNjuVEUYVmz16cOBp+T50Ka621dALZ\ncEPo1i3viM3Ky+0b5eVE0UksXAgvvLB0Apk9GzbeeOkEssYaeUdsVj5u3ygtJ4pObu5ceOaZJZPH\n5MnQs+fSbR+bbAIrrJB3xGal5faNZedE0QVFwMyZS5c+XngBBg1aOoGst16ao9msM3D7RttVVKKQ\nNJLFs9Rd3sx82TXAH4EewNsRUZOtnw58ACwCFkTE8CaOdaJowfz5MG3a0gnkgw9SY3lhAtl0U1h1\n1bwjNlt2bt9oXcUkCkndSPNe7wTMAh6j0bzXklYB/o80FepMSf0i4u1s28vAsIh4t4VrOFG0w7vv\npqRRmECeeSZVU623Hqy7bvpp/Hj11f3NzKqP2zeWVkmJYhvg1IgYmS2fCBARZxXscwSwZkT8ponj\nXwa+EhHvtHANJ4oSqa+HN9+EV19N/T1efXXpxx99tDhxNJVI1lkntZWYVSq3bySVlCi+RyopHJYt\nHwBsFRE/L9inocppCLAicF5EXJdtewl4n1T1dGlEXNbENZwoOtCHH8KMGc0nk1mz4HOfa7lUsuqq\nLpVY5eiq7RttTRTdyxhLMZ/gPYChwAigN/CwpEci4nngaxHxmqTVgbGSpkXE+MYnqK2t/exxTU0N\nNTU1pYjdmtC3b7o1d+ONm96+aBG8/vqSCWTaNLjnnsXJZOHCphNIw+MBAzzMiXWcXr1Su8WIEWm5\nsH3jggs6T/tGXV0ddXV17T6+nCWKrYHagqqnUUB9YYO2pBOAXhFRmy1fDvw7Im5pdK5TgQ8j4g+N\n1rtEUWXef7/paq2Gx7NnQ//+LZdKVlop77/CuorO2r5RSVVP3UmN2SOA14AJLN2Y/UXgz8AuQE/g\nUWAfYDrQLSLmSuoD3AOcFhH3NLqGE0Uns2BBqsJqKpk0LHfv3nKpZK213HvdSq8ztW9UTKLIgtmV\nxbfHXhERoyUdDhARl2b7HAccCtQDl0XE+ZI2AP6WnaY7cENEjG7i/E4UXUwEvPde8w3ur7yS7upa\ne+2Wk0mfPnn/JVbtqrl9o6ISRbk5UVhTPv00dUBsLpm8+mpKFC0lkjXWcKdEa5tq6r/hRGHWigh4\n662WbwX+4AMYOLD5ZDJwoIdHsZZVcvuGE4VZCXz8ccu3As+cmW71ba7BfeDA9EFQLXXWVl6V1r7h\nRGHWAerr4Y03mm8nmTEjlUog3Vbcp8/i3809bsv23r1dNVbN8m7fcKIwqyDz56ce7R9+mH4XPm5q\nXWvbG35/8kmq+mpvomlpu0tBHa+j2zecKMy6gPr69GFSiuTTeDu4FJS3crdvOFGY2TJpaymo2OTk\nUlD7lKN9w4nCzCpSR5WCljURVXopqBTtG04UZtblNC4FlSL5fPRR+lDu1auyS0Htad9wojAzK5G2\nlILampygPKWg2bNh3LiW2zecKMzMqkBHlIJ6905jpy1cmK7ZrRsMHw4PP1w5w4ybmVkzll8+/ZR6\nCuLCUlBzCeXhh9t2TpcozMy6mLZWPVVYe76ZmVUaJwozM2uRE4WZmbWorIlC0khJ0yQ9n0172tQ+\nNZImSnpGUl1bjjUzs/IrW6KQ1I00zelIYBNgX0kbN9pnFeBCYPeI+BLwvWKPrSbLMql5R3KcpVUN\ncVZDjOA481bOEsVw4IWImB4RC4AxwJ6N9tkPuDUiZgJExNttOLZqVMs/j+MsrWqIsxpiBMeZt3Im\nigHAjILlmdm6QhsBq0m6T9Ljkg5sw7FmZtYBytnhrpgODj2AocAIoDfwsKRHijzWzMw6QNk63Ena\nGqiNiJHZ8iigPiLOLtjnBKBXRNRmy5cD/yaVIFo8NlvvhGJm1g6VMoTH48BGkgYBrwH7APs22ufv\nwJ+zxuuewFbAucBzRRzbpj/UzMzap2yJIiIWSjoSuBvoBlwREVMlHZ5tvzQipkn6N/A0UA9cFhFT\nAJo6tlyxmplZ86p6rCczMyu/qu2ZXQ0d8iQNzO7o+m/WofCovGNqjqRuWcfHf+QdS3MkrSLpFklT\nJU3J2sEqjqRR2Ws+WdKNknrmHROApCslzZY0uWDdapLGSnpO0j1Z36ZcNRPnOdnr/pSkv0laxlmj\nl11TcRZsO1ZSvaTV8oitII4mY5T08+z5fEbS2c0d36AqE0UVdchbABwTEUOArYGfVWicAL8AplDZ\nd5ydB9wZERsDmwEVVx2ZtasdBgyNiE1JVac/yDOmAleR3jOFTgTGRsRgYFy2nLem4rwHGBIRm5Pa\nMEd1eFRLaypOJA0EvgG80uERLW2pGCV9HdgD2Czr6Pz71k5SlYmCKumQFxFvRMSk7PGHpA+2tfON\nammS1gF2Ay4HKvIGgewb5HYRcSWkNrCIeD/nsJryAekLQm9J3Um3fc/KN6QkIsYD7zVavQdwTfb4\nGmCvDg2qCU3FGRFjI6I+W3wUaGKCz47VzPMJ6Yac4zs4nCY1E+NPgdHZZycR8VZr56nWRFF1HfKy\nb5pbkP7JK80fgV+RbiioVOsDb0m6StKTki6T1DvvoBqLiHeBPwCvku7YmxMR9+YbVYv6R8Ts7PFs\noH+ewRTph8CdeQfRFEl7AjMj4um8Y2nBRsD2kh6RVCfpK60dUK2JopKrR5YiqS9wC/CLrGRRMSR9\nC3gzIiZSoaWJTHdS58yLImIo8BGVUU2yBEmfB44GBpFKj30l7Z9rUEXKZgGr6PeWpJOB+RFxY96x\nNJZ9cTkJOLVwdU7htKQ7sGpEbE36gviX1g6o1kQxCxhYsDyQVKqoOJJ6ALcC10fE7XnH04RtgT0k\nvQzcBOwo6dqcY2rKTNI3tcey5VtIiaPSfAV4KCLeiYiFwN9Iz3Glmi1pTQBJawFv5hxPsyQdQqoi\nrdTE+3nSF4SnsvfTOsATktbINaqlzST9X5K9n+olfa6lA6o1UXzWmU/S8qQOeXfkHNNSJAm4ApgS\nEX/KO56mRMRJETEwItYnNbr+JyIOyjuuxiLiDWCGpMHZqp2A/+YYUnOmAVtL6pW9/juRbhKoVHcA\nB2ePDwYq8csMkkaSvv3uGRGf5B1PUyJickT0j4j1s/fTTNJNDZWWfG8HdgTI3k/LR8Q7LR1QlYki\n+6bW0CFvCnBzhXbI+ypwAPD17NbTidk/fCWr5KqHnwM3SHqKdNfTmTnHs5SIeAq4lvRlpqGe+n/z\ni2gxSTcBDwFfkDRD0qHAWcA3JD1H+vA4K88Yock4fwhcAPQFxmbvo4tyDZIl4hxc8HwWyv291EyM\nVwIbZLfM3gS0+sXQHe7MzKxFVVmiMDOzjuNEYWZmLXKiMDOzFjlRmJlZi5wozMysRU4UZmbWIicK\nq2iSFmX3zU+W9BdJvfKOqRiS1pD0r+zx5pJ2LcE5L5G0jaQvSpok6QlJG0haavZHSWtJeiHbp2/B\n+l6S/lUwxPTogm1HSTpwWeO0zseJwirdxxGxRTZk93zgJ4UbsxFaO0Qbr3UkcHX2eAvS0BPLaivS\noJJ7AX+NiGHAusB+hTtJWhG4jdST+Rrglkax/082VPsWwFcLOoFeRerUaLYEJwqrJuOBDSXtIGm8\npL8Dz0haLpvYZkI2sc2P4bNv1Q8UlEi+mu17dbb8tKRfZPvWSRqWPe6XjdWDpEMk3SFpHKlXcG+l\nyWAezUax3aOZWL8H/CsbYua3wD5ZHN9Xmizo9izWhyVtml2rNjv3fZJelPTZh7bSPCbPAbuQ5g75\nqaT/AKOB7bJz/yJLCDcCZ0XEbRFxPmmYjssAImJeRNyfPV4APEk28nJEzAXekTSkFC+WdR4d9m3M\nbFlkH4C7sXh46S1IE9m8kiWGORExXGk2uQcl3QN8B/h3RJyZjbvUJztu7ayEgqSVsvO1NHLqFsCm\nETFH0pnAuIj4odJscI9KujciPi6IdU1gUcM6SacAwyLiqGz5AuCJiNhLaRKZa7NrAAwGvg6sBDwr\n6aKIWATsCtwVEXdJugSYGxHnStoBOC4idi+It/AxEdHkcBdZ/LsDheOQTQC2pzLH0bKcuERhla6X\npInAY8B00jg1AiZERMMMYjsDB2X7PQKsBmyYHXOopFNJs3l9CLxIGufmfEm7AHOLiGFsRMwpuNaJ\n2bXuA3qy5EjGAOsBrxcsiyWHm/4qcB1ARNwHfC6rLgrgXxGxIBuk7U0Wzw+xM/DvRucs/N0mWeK9\nCTgvIqYXbHqNNAKq2WdcorBKNy8itihckQoHfNRovyMjYmzjgyVtB3wLuFrSuRFxnaTNSVU4PwH2\nBn4ELGTxF6cVGp2m8bW+ExHPtxJ34Qd4UyWV5j7g5xc8XgR0V5rnYJVsBN1S+V/g2axqqnFcHgDO\nluAShXUGdwNHNDTYShqctSWsC7wVEZeTpnkdqjTufreI+BtwCourfKaT5pKA1L7Q0rWOaliQtEUT\n+7wCrFmwPBdYsWB5PNmcCpJqshjn0nTyEKkq6j/NxNP43K2S9DtS1dYxTWxei/RcmH3GicIqXVPf\nbhu3J1xOGm7+yWzo5ItJpeUaYJKkJ0klhz+RGm7vy6qOrgNGZef4PamB+EngcwXnb3yt04EeWUP4\nM8BpSwWXvvl3l9QnW3UfsElDYzZQCwxTGi79TBbPB9H4Wg2Pd2XJaqfCbU8Bi7LbZX/ROJbGlOZH\nPwnYmPR8TZT0o4JdhpMSmdlnPMy4WRlIqgWmRsTNJTjXE8DwrFG7bLKG/XERsWU5r2PVx4nCrAwk\nrQ5cExGl6D/RISQdBbwbEdfnHYtVFicKMzNrkdsozMysRU4UZmbWIicKMzNrkROFmZm1yInCzMxa\n5ERhZmYt+v/jvQbqw2EtYAAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5d2cab0>"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex4-pg323"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate Primary Consolidation Sc in three parts\n",
      "Gd=14.\n",
      "Gss=18.\n",
      "Gsc=19.\n",
      "Gw=9.81\n",
      "To= 2.*Gd+4.*(Gss-Gw)+2*(Gsc-Gw)\n",
      "LL=40.\n",
      "Cc=0.009*(LL-10)\n",
      "H=4.\n",
      "T=100.\n",
      "e=0.8\n",
      "Sc= Cc*H*math.log10((To+T)/To)/(1.+e)\n",
      "print'%s %.2f %s'%('a)Primary Consolidation Sc = ',Sc,' m')\n",
      "\n",
      "\n",
      "Tc=190\n",
      "Cs=Cc/6\n",
      "Sc= Cs*H*math.log10((To+T)/To)/(1+e)\n",
      "print'%s %.2f %s'%(' b)Primary Consolidation Sc =',Sc,'m')\n",
      "\n",
      "\n",
      "Tc=170\n",
      "Sc= Cc*H*math.log10((To+T)/Tc)/(1+e)+ Cs*H*math.log10(Tc/To)/(1+e)\n",
      "print'%s %.3f %s'%(' c)Primary Consolidation Sc =',Sc,' m')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a)Primary Consolidation Sc =  0.21  m\n",
        " b)Primary Consolidation Sc = 0.04 m\n",
        " c)Primary Consolidation Sc = 0.047  m\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex5-pg325"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate The settlement in the field Sc\n",
      "Gs=18.\n",
      "Gw=9.81\n",
      "H=10.\n",
      "eo=1.1\n",
      "To=5.*(Gs-Gw)\n",
      "T1=48.\n",
      "T=To+T1\n",
      "e1=1.045 ## void ratio corresponding to T \n",
      "e=eo-e1\n",
      "Sc=H*e/(1.+eo)\n",
      "print'%s %.2f %s'%('The settlement in the field Sc = ',Sc,' m')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The settlement in the field Sc =  0.26  m\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex6-pg329"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate Total consolidation settlement of the clay\n",
      "T=8.5\n",
      "eo=0.8\n",
      "Cc=0.28\n",
      "To=2650.\n",
      "T1=970.\n",
      "C1=0.02\n",
      "t2=5.\n",
      "t1=1.5\n",
      "H=8.5*12\n",
      "epr=Cc*math.log10((To+T1)/To)\n",
      "ep=eo-epr\n",
      "C2=C1/(1.+ep)\n",
      "Sc=epr*H/(1.+eo)\n",
      "Ss=C2*H*math.log10(t2/t1)\n",
      "TS=Sc+Ss\n",
      "print'%s %.1f %s'%('Total consolidation settlement of the clay =',TS,' in')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Total consolidation settlement of the clay = 2.8  in\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex7-pg336"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate t field\n",
      "##T50 = Cvtlab /H^2 lab = Cvtfield?H^2 fiels\n",
      "tl=140.\n",
      "Hf=3.\n",
      "Hd=0.025/2.\n",
      "tf=tl*Hf**2/Hd**2\n",
      "k=tf/(3600.*24.)\n",
      "print'%s %.1f %s'%('t field = ',k,' days')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "t field =  93.3  days\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex8-pg336"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "##Tv is directly proportional to U^2\n",
      "t1=93.333\n",
      "U2=30.\n",
      "U1=50.\n",
      "t2=t1*U2**2./U1**2.\n",
      "print'%s %.2f %s'%('t2 =',t2,' days')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "t2 = 33.60  days\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex9-pg337"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#evaluvate Cv\n",
      "#intilization variable\n",
      "t90=75.*24.*60.*60. ## time in sec\n",
      "T90=0.848\n",
      "Hd=1.5*100. ##in cm\n",
      "Cv=T90*Hd**2/t90\n",
      "print'%s %.3f %s'%('Cv =',Cv,' cm^2/sec')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Cv = 0.003  cm^2/sec\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex10-pg337"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate K and t60\n",
      "To=3000. ## lb/ft^2\n",
      "eo=1.1\n",
      "e1=0.9\n",
      "e=eo-e1\n",
      "ea=(eo+e1)/2.\n",
      "T1=3000. ## lb/ft^2\n",
      "T=1. ## in\n",
      "t = 2. ## min\n",
      "m=(e/T1)/(1.+ea)\n",
      "U=50.\n",
      "Tv=0.197\n",
      "Gw=62.4 ##lb/ft^3\n",
      "Cv=Tv*(T/(2.*12.)**2)/t\n",
      "k=Cv*m*Gw *10**7\n",
      "print'%s %.3f %s'%('a)k = ',k,' x10^-7 ft/min')\n",
      "\n",
      "\n",
      "U=60\n",
      "Tv=0.286\n",
      "H=6\n",
      "t60=Tv*H**2/(Cv*60*24)\n",
      "print'%s %.1f %s'%(' b)t60 =',t60,' days')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a)k =  3.557  x10^-7 ft/min\n",
        " b)t60 = 41.8  days\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex11-pg344"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate the value of Cv\n",
      "import math\n",
      "#Cv\n",
      "t50=19\n",
      "Hd=2.24/2\n",
      "Cv=0.197*Hd**2/t50\n",
      "print'%s %.3f %s'%('Cv = ',Cv,' cm^2/min')\n",
      "%matplotlib inline\n",
      "import warnings\n",
      "warnings.filterwarnings('ignore')\n",
      "import math\n",
      "import numpy\n",
      "from math import tan\n",
      "import matplotlib\n",
      "from matplotlib import pyplot\n",
      "#given\n",
      "t=numpy.array([.02,.1,.25,.5,1,2.,4.,8.,16.,30.,60.,120.,240.,480.,960.,1440.])\n",
      "gauge=numpy.array([3975.,4082.,4102.,4128.,4166.,4224.,4298.,4420.,4572.,4737.,4923.,5080.,5207.,5283.,5334.,5364.])\n",
      "Hdr=2.24\n",
      "t50=19.\n",
      "#calculations\n",
      "Cv=.197*(Hdr/2)**2 /t50/60.\n",
      "leng=len(t)\n",
      "logt=numpy.zeros(leng)\n",
      "for i in range(0,leng):\n",
      "\tlogt[i]=math.log(t[i])\n",
      "\n",
      "#results\n",
      "print 'The value of Cv (cm^2/sec) = ',Cv\n",
      "pyplot.plot(logt,gauge)\n",
      "pyplot.xlabel('Time(min) - log scale')\n",
      "pyplot.ylabel('Dial reading (cm)')\n",
      "pyplot.title('Graph of dial reading vs time')\n",
      "pyplot.show()\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Cv =  0.013  cm^2/min\n",
        "The value of Cv (cm^2/sec) =  0.000216769122807\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmclXX5//HXW1zAwi2NZFGpUEEtERV3xkzEJTE3NMU1\n/SVf06+WpX4zsJLMcsFMW8yEcgk3RAMElXHJBU1UFDcqVFA0txQ3lrl+f3w+A8dxlgNzzpxZ3s/H\n4zy4z33u5boHmOt8dkUEZmZmjVml0gGYmVnr52RhZmZNcrIwM7MmOVmYmVmTnCzMzKxJThZmZtYk\nJwurKEmjJP25RNfqJuleSe9K+mURxx8j6b6C9+9J2qSI8zaRVCOpIv9/8r2/mLevkPSjSsSxsor9\nOVvrsmqlA7DWRdJhwGnAFsD7wL+BsRFxRZluWcqBPicCr0fEWisVSETXEsbSIiLipErH0BhJ1cCf\nI+KPtfva4s/ZXLKwApK+B1wC/ALoFhHdgO8AO0tavYFzmvtvSM08v9DGwDMlvF6zSeroX8g86red\ncLIwACStDZwLnBQRN0fE+wAR8XhEHBkRi/JxV+eqj0mSFgJVkvaVNFPSfyW9JGlkwXVrq2xOkDRf\n0is5KdUKYHVJY3P10VOSBjQS506SHpH0jqQZknasjQs4CvhBrub4Wj3nfk7SxBznw8CX6nxeWL3T\n4DMV8bOcK+kHkp4E3pO0iqQdJD0g6W1Jj0saVHD8sZJm5+f/p6QT61zvjPxzmyfpuDqfXS3pp3m7\nKh9zuqTX8jnH1Hn+2/IzzZD0s8JquDrXnSzpf+rse0LSAXn74nyP/0p6UtIW9VzjPGBX4LL8d3Jp\nPT/nqyVdnv89vSfpPklfkDQm/6yekbR1wTW7S7pJ0uuS/iXpu8X9rVizRYRffgEMARYDqzRx3NXA\nO8CO+f0awCBgi/x+K2ABMDS/3wSoAa4BugBbAq8De+TPRwEf5vsLGA082MC91wPeBo4gfdE5DHgL\nWDd//ifgJ43Efn1+dSFVs80D7i34vAb4Yt4u5pnq/VkBc4HHgB7559MDeAMYkj//en7/ufx+H6B3\n3t6NVP3Xv+DvZQHQD1gTuLZOnMueGajKf4ejgE7A3vlaaxc8/7VAZ6Av8FLh89d5huHA/QXv++Wf\n/WrAXsCjwFr5s82ALzRwnenAcXX2FcZ/NfAfoH/+Wd2Vf35H5n8PPwXuzseuAvwD+BGpCr038E9g\ncKX//3SEl0sWVmt94I2IqKndUfBN+ANJuxQcOyEiHgSIiI8j4p6IeDq/n0X6pTSITzo3Ij6MiKdI\nv+AOL/jsvoiYEuk3wl+ArzYQ477AcxFxTUTURMT1wLPA/gXH1FutJakTcCDw4xzH08DYho4v8pka\nEsClETE/Ij4m/eKbFBFT8vXuJP2y3Te/nxQR/87b9wJTSd/IAQ4FroqI2RHxAVBfCafwGRaTksfS\niJgMLAQ2K3j+kRHxUUQ809jzAxOArSX1yu+PAG6KiMX5Hl2BvpJWiYjnImJBIz+PxqoaA7g5Imbm\nn9UtwPsR8Zf872E8KZEAbAesHxE/i4gl+Wd2JelLg5WZk4XVehNYv7ANIiJ2ioh182e1+wN4ufBE\nSQMlTc9VA+8A/w/4XJ3rF57zEtC94P1rBdsfAJ0baAvpns8t9GKdazVkA9K30bpx1KvIZ2pM4X02\nBg7JifdtSW8DOwNfyPfaW9JDkt7Mn+1TcK8Ni405e7Mw4ZN+np+l/uef19BFIuI94G8sT+qHkUqH\nRMTdwGXAb4DXJP1OUmON1k21W7xesP1Rnfcf5vgh/Ry71/k5ngV8vonrWwk4WVitB4GPgQNW4txr\nSd9Ee0bEOsBv+fS/rY3qbM9fifvMJ/3CKLRxkdf6D7CknjgaUswzNabwF+RLpB5B6xa8ukbEBZLW\nAG4CLgA+n5PzJJZ/G3+1iJiLaUSuff5eBft6NXBsreuAw3O7UOeImL7shhG/johtSdVTmwJnNHCN\nUjZwvwz8u87Pca2I2K+E97AGOFkYABHxDqmB+3JJB0nqmhtmtwY+U3BofVUKnwXejohFkrYHvsWn\nf0n8SFKX3BB6DPDXlQhzErCppMMlrSppGLA5cHsjsdU+31LgZmBUjqMfcHQj9yrmmYr1F+AbkgZL\n6iSpc26M7gGsnl9vADWS9gYGF5w7HjhGUl9Ja/LpaihRRI+yep5/c1K7RGPPNImUjM8lVcOlG0rb\n5pLXaqSSy0fA0gau8Rp1OhLUE3+xZpA6DPwgP0MnSVtK2nYFrmErycnClomIXwKnAz8gNaouIH2j\n/gGp5AHpl0vdXzAjgJ9Iehc4h/oTwT3AHOBO4Je53r6h69X7Cywi3gL2A75H+uX6fWC/vL+haxU6\nmZQEFgBX5Vfh8YXbTT1T0YkjIuYBQ4GzSVUsL+VnUK7uOYWUFN4iVfvcWnDuFFJ35ruB50kNwHVj\nbugZ6joZWJv0/GNJJYdFjcS9iJRg9iCVtGqtBfw+xzuX9HfR0CDIMcDBkt6SdEl9t6kn/nr/PeSE\ntx+wNfAvUmnp9zkeKzOlNqQy3kCaC7xL+uaxOCK2L/jse6R/ZOvX/oeXdBZwXD7+lIiYmvcPIPWc\n6ExqLDy1rIFbSSiN1P0XsGqdunSrMEm/IFV9HVvpWKz1a4mSRQBVEdG/TqLoBexJaqCs3dcPGEaq\nBx1CqhKpLaZeARwfEX2APpKGtEDsZu2GpM0kfUXJ9qQvZbdUOi5rG1qqGqq+esmLSNUbhYYC10XE\n4oiYS6q2GChpQ6BrRMzIx41j5RpirTI8ird16EpqTF9IaoP4VURMrGxI1la0xFQEAdwpaSnwu4j4\ng6ShwLyIeHJ5wQFIXSAfKng/jzSgaTGf7OY3P++3Vi4n/U6VjsMgIh4F+lQ6DmubWiJZ7BwRr0ra\nAJgm6VlS3+jCHh+lnB/IzMxKrOzJIiJezX/+R9ItpFGwvYEncqmiJ/APSQNJJYbCvt89SSWK+Xm7\ncP+n+tZLcnWHmdkKiogmv7CXtc1C0pq1IzslfYZUmpgREd0iondE9CYlg20i4jVgInCYpNUl9SYV\nmWfkqQTezX27ReofPqG+e5ZjTpTW8Bo5cmTFY/Dz+fn8fO3vVaxylyy6AbfkEsSqwDWRu8IWWBZt\nRMyWNB6YTRptOiKWP80IUtfZLhTMs2NmZuVX1mQRaaKvrZs45ot13o8mzTxa97h/kGb/NDPrsCJA\nFWjl9QjuNqKqqqrSIZSVn69t8/OV1wcfwDXXwF57wehPfZVuGWUfwd2SJEV7eh4z67hqauC++2Dc\nOLj5ZthhBzj6aBg6FLp0Kd19JBFFNHB39CUfzcxalTlz4M9/Tknis59NCeLpp6F7MRPxl5GThZlZ\nhf33vzB+PIwdC88/D4cfDjfdBP37V6Z9oj6uhjIzq4AlS2DatFSCmDwZvv51OOoo2HtvWG21louj\n2GooJwszsxb0xBMpQVx7LWy8cUoQhx0G661XmXjcZmFm1kosWJCSw7hx8PbbMHw4VFfDZptVOrLi\nuWRhZlYGH34It96aEsSDD8I3v5lKEbvtBqu0okELLlmYmbWwmhr4+99TgrjpJthuu5QgbrgBPvOZ\nps9vzZwszMyaqba765//nMZAHH00zJoFPdrRQgpOFmZmK+Htt1OJYezYlCwOPxxuvLF1dXctJbdZ\nmJmtgMcfT1Nu3HEHDB6cShF77dWy3V1Lqdg2i1bUzGJm1nq99FJKDEOGwM47w9y5qWSx335tN1Gs\nCCcLM7NGvPMO/PCHqXppo43SCOtTT4V11610ZC3LycLMrB4ffwyXXAKbbgpvvZUarH/6U1hrrUpH\nVhlu4DYzKxCR5mk6+2zo2xfuvhu23LLSUVWek4WZWXbPPXDGGWm8xJVXwu67Vzqi1sPJwsw6vNmz\n4cwzU1XT6NEwbFjrGmXdGvjHYWYd1quvwoknQlVVej37bBov4UTxaWX/kUiaK+lJSTMlzcj7finp\nGUlPSLpZ0toFx58l6QVJz0oaXLB/gKRZ+bMx5Y7bzNqv996DkSNTW8Q668Bzz8Hpp8Maa1Q6star\nJfJnAFUR0T8its/7pgJbRMRXgeeBswAk9QOGAf2AIcDl0rKxkFcAx0dEH6CPpCEtELuZtSOLF8Nv\nf5t6OP3rX/DYY3DBBR2vG+zKaKnC1idGB0bEtIioyW8fBnrm7aHAdRGxOCLmAnOAgZI2BLpGxIx8\n3DjggPKHbWbtQQRMmABbbZWm5Pjb39I8ThtvXOnI2o6WaOAO4E5JS4HfRcQf6nx+HHBd3u4OPFTw\n2TygB7A4b9ean/ebmTXq44/T+hHPPJPGTey1V/ucu6ncWiJZ7BwRr0raAJgm6dmIuA9A0v8BiyLi\n2haIw8w6mPfegwMOSKvQPfqo2ySao+zJIiJezX/+R9ItwPbAfZKOAfYB9ig4fD7Qq+B9T1KJYj7L\nq6pq98+v736jRo1atl1VVUVVVVVzH8HM2qDXX4d99oFtt4Xf/AY6dap0RK1DdXU11dXVK3xeWWed\nlbQm0Cki3pP0GVLD9rmktpILgUER8UbB8f2Aa0kJpQdwJ/DliAhJDwOnADOAvwGXRsSUOvfzrLNm\nxty5qbpp2DA491xXOzWmtayU1w24JXdoWhW4JiKmSnoBWJ1ULQXwYESMiIjZksYDs4ElwIiC3/4j\ngKuBLsCkuonCzAzgqadg773TSOxTTql0NO2H17Mws3bjgQfSWtcXXwzf+lalo2kbWkvJwsysRUye\nnNabGDcurTlhpeVB7WbW5l1zDRx7LEyc6ERRLi5ZmFmbNmYMXHhhmkq8X79KR9N+OVmYWZsUAT/6\nEdx0E9x/f1rFzsrHycLM2pylS+Gkk2DmTLjvPthgg0pH1P45WZhZm/LRR3DEEfDuu6nqqWvXSkfU\nMbiB28zajHffTaOyO3WC2293omhJThZm1ia8/npa5nTzzeG66zzPU0tzsjCzVm/uXNhlF/jGNzzP\nU6U4WZhZqzZrFuy6a5q6Y9Qoz/NUKW7gNrNW6+9/hwMPTGMpDjus0tF0bE4WZtYqTZoExxwDf/kL\nDB5c6WjMEwmaWatzzz1wyCFw220wcGClo2nfip1I0G0WZtaqPP00HHooXH+9E0Vr4mRhZq3GK6+k\ncRQXXQRf+1qlo7FCThZm1irUDrg76aQ0QttaF7dZmFnFLVoE++4LffqkcRTuHttyim2zcLIws4qK\nSL2e3nkHbr7ZA+5amlfKM7M24cc/hueeS5MCOlG0XmVvs5A0V9KTkmZKmpH3rSdpmqTnJU2VtE7B\n8WdJekHSs5IGF+wfIGlW/mxMueM2s/L7/e9Tr6fbboM116x0NNaYlmjgDqAqIvpHxPZ535nAtIjY\nFLgrv0dSP2AY0A8YAlwuLau9vAI4PiL6AH0kefFEszbs9tth5Mi0drbXo2j9Wqo3VN36sP2BsXl7\nLHBA3h4KXBcRiyNiLjAHGChpQ6BrRMzIx40rOMfM2phHHoHjjoMJE+DLX650NFaMlipZ3CnpUUkn\n5H3dIuK1vP0a0C1vdwfmFZw7D+hRz/75eb+ZtTH//CcMHQpXXulBd21JSzRw7xwRr0raAJgm6dnC\nDyMiJJWsC9OoUaOWbVdVVVFVVVWqS5tZM/3nP7D33qlRe//9Kx1Nx1RdXU11dfUKn9eiXWcljQQW\nAieQ2jEW5Cqm6RGxuaQzASLi/Hz8FGAk8GI+pm/efzgwKCK+U+f67jpr1kp98AHssUdawGj06EpH\nY7VaxdxQktaU1DVvfwYYDMwCJgJH58OOBibk7YnAYZJWl9Qb6APMiIgFwLuSBuYG7+EF55hZK7d0\nKXzrW6l94rzzKh2NrYxyV0N1A27JHZpWBa6JiKmSHgXGSzoemAscChARsyWNB2YDS4ARBUWFEcDV\nQBdgUkRMKXPsZlYCEWnhooULYfx4j85uqzyC28zK6oIL0poU990Ha69d6WisLo/gNrOKu/ZauOwy\neOABJ4q2ziULMyuL6dNh2LA0jceWW1Y6GmtIq2jgNrOOadaslCj++lcnivbCycLMSmrevDTd+CWX\npG6y1j44WZhZyfz3v2kBo5NPTl1lrf1wm4WZlcSiRWl0dt++8Otfu4tsW+E2CzNrUWedBZ07w5gx\nThTtkbvOmlmz3XYb3HgjPPaYFzBqr5wszKxZXnoJvv1tuOUW+NznKh2NlUvR1VCSOktao5zBmFnb\nsngxHH44nH467LRTpaOxcmqwgVvSKqQFhg4HdiIlFgFLgQeBa4AJralF2Q3cZi3rzDPhiSfgb3+D\nVdwC2iYV28DdWLK4F7iPNBPs4xHxcd6/BtCftNrdLhGxW8mibiYnC7OWM3kynHACzJzpZVHbslIk\nizVqE0QjN2nymJbkZGHWMubPhwED0iyyu7War4u2MpqdLOpcbF1gI2BZP4eIeKxZEZaBk4VZ+S1Z\nAl/7GgweDD/6UaWjseYq2ayzkn4KHAP8C6gp+MgD+c06oHPPhTXWSOMqrOMopuvsMOBLEbGo3MGY\nWet2551w1VUeT9ERFdN/4Wlg3XIHYmat26uvwlFHwbhx0K1bpaOxltZkm4Wk7YBbgaeA2sbsiIj9\nyxzbCnObhVl5LF0Ke+4Ju+6aqqGs/SjlSnnjgPNJyaK2zcK/kc06kPPOS2tp//jHlY7EKqWYZLEw\nIi5d2RtI6gQ8CsyLiG9I2h64DFgNWAKMiIhH8rFnAceRBv6dEhFT8/4BwNVAZ2BSRJy6svGY2Yqp\nroYrroB//MPtFB1ZMW0W90n6uaQdJW1T+1qBe5wKzGZ5aeQC4JyI6A/8OL9HUj9SY3o/YAhwubRs\n7sorgOMjog/QR9KQFbi/ma2k11+HI4+Eq6+G7t0rHY1VUjEli21Iv+h3qLO/ya6zknoC+wDnAafn\n3a8CtUu3rwPMz9tDgesiYjEwV9IcYKCkF4GuETEjHzeONA3JlCJiN7OVVFMDw4enRu299qp0NFZp\nTSaLiKhqxvUvBs4A1irYdyZwv6RfkUo2O+b93YGHCo6bB/QAFuftWvPzfjMro/PPhw8+gJ/8pNKR\nWGtQzKC80cAFEfFOfr8u8L2IaHTspqT9gNcjYqakqoKP/khqj7hF0iHAVcCeK/sAdY0aNWrZdlVV\nFVVVVQ0ea2b1u+8+uPRSePRRWNULGbQr1dXVVFdXr/B5xXSdfTwitq6zb2Zuc2jsvNHAcFIjdmdS\n6eJmYGhErJWPEfBORKwt6UyAiDg/fzYFGAm8CEyPiL55/+HAoIj4Tj33dNdZs2Z64w3YZpvUqL3v\nvpWOxsqtlMuqriKpc8GFuwCrN3VSRJwdEb0iojdwGHB3RAwH5kgalA/7GvB83p4IHCZpdUm9gT7A\njIhYALwraWBOLsOBCUXEbWYrqKYGjj4ahg1zorBPKqaAeQ1wl6SrSOtZHEtqZF5RtV/5TwR+k6c6\n/zC/JyJmSxpP6jlV26W29pwRpK6zXUhdZ924bVYGF14Ib70Fo0dXOhJrbYqddXZvYI/8dlpE3FHW\nqFaSq6HMVt6DD8IBB8CMGbDxxpWOxlpKKdazaPI3bzHHtKRWFo5Zm/HWW9C/f2rUHjq00tFYSypF\nm0W1pDMkbVrPxTeT9EPgnuYEaWaVFwHHHgsHHuhEYQ1rrM1iMHAEqX1hS+A9UpvFZ0nzRF0DfL3s\nEZpZWY0ZA6+8AjfcUOlIrDUrts2iE7B+fvtGRCwta1QrydVQZivmkUdSr6eHHoIvfrHS0VgllHLW\nWXJyeK3ZUZlZq/HWW3DooWk8hROFNaWokkVb4ZKFWXFqalL7xJe+BJdcUulorJJKWrIws/bll79M\nI7VvuqnSkVhb4WRh1sHcey9cfHFqr1i9ybkYzJImp/uQ9F49r3mSbpHkmk6zNuS11+Bb30rrU/Tq\nVelorC0ppmQxBngZuC6/Pwz4EjCTNGNsVVkiM7OSWro0JYpjj4UhXj7MVlAxs84+GRFfqbPv8YjY\nWtITEfHVska4AtzAbdawc86BBx6AqVO9PKotV8oG7g8kDQNqh+wcDHyUt/2b2awNmDIF/vQnr6Nt\nK6+YksWXSFVRtcuqPgT8L2nFugERcX9ZI1wBLlmYfdrLL8N228H48bDbbpWOxlqbZk8k2BY5WZh9\n0qJFMGhQmk32hz+sdDTWGpUsWUj6PHACsAnLq60iIo5rbpCl5mRh9kmnnQZz5sCtt8IqxSx1Zh1O\nKdssbgXuBaYBNXmffyObtXI33QQTJqR2CicKa66VWoO7tXLJwix54QXYaSeYPBm23bbS0VhrVso1\nuG+X5NV4zdqIDz+Egw+Gc891orDSKaZksRBYE1gELM67IyLWKnNsK8wlCzP49rfh/ffh2mtBTX5f\ntI6uZCWLiPhsRKwSEZ0jomt+FZ0oJHWSNFPSbQX7vivpGUlPSfpFwf6zJL0g6VlJgwv2D5A0K382\npth7m3U0Y8fC/ffD73/vRGGl1WADt6S+EfGMpG3q+zwiHivyHqcCs4Gu+bq7A/sDX4mIxZI2yPv7\nAcOAfkAP4E5JfXJR4Qrg+IiYIWmSpCERMaXI+5t1CLNmwfe/D9OnQ9eulY7G2pvGekOdTuoyexH1\n937avamLS+oJ7AOcl68HcBLw84hYDBAR/8n7hwLX5f1zJc0BBkp6EegaETPyceOAAwAnC7Psvffg\nkEPgwgthyy0rHY21Rw0mi4g4If9Z1YzrXwycARRWW/UBdpM0mjRtyPcj4lGgO2l0eK15pBLG4rxd\na37eb2ZABJxwAuy6Kxx1VKWjsfaqsWqog2hkPEVE3NzYhSXtB7weETMlVdW557oRsYOk7YDxQMmm\nOh81atSy7aqqKqqqqho81qw9uPxyeO65NEmgWVOqq6uprq5e4fMa7A0l6WpSsvg8sBNwd/5od+CB\niNiv0QunksNwYAnQmVS6uBlYHzg/Iu7Jx80hzTv1bYCIOD/vnwKMBF4EpkdE37z/cGBQRHynnnu6\nN5R1KI88AvvumxLFl79c6WisLWp2b6iIOCYijgVWB/pFxEERcRCwRd7XqIg4OyJ6RURv0hoYd0fE\ncGAC8LUc5KbA6hHxBjAROEzS6pJ6k6qrZkTEAuBdSQMliZSAJjR1f7P27q234NBD4be/daKw8itm\nuo9ewIKC968BG63EvWq/8l8FXCVpFmnsxlEAETFb0nhSz6klwIiCYsII4GqgCzDJPaGso6upgaOP\nThMEHnhgpaOxjqCYQXmXAZsC1wIidW99ISK+W/7wVoyroawjiIBTTkldZadO9Tra1jylnHVWwDeB\n3Uilg3sj4paSRFliThbWEfzsZ3DjjXDPPbD22pWOxto6r2dh1g797ndwwQVplPaGG1Y6GmsPSjbd\nh6QdJT0iaaGkxZJqJL1bmjDNrFg33ZQmB7zjDicKa3nFzDp7GfAt4AVSF9jjgcvLGZSZfdL06XDS\nSfC3v7nnk1VGUUuiRMQLQKeIWBoRfwKGlDcsM6s1cyYMGwZ//Sv071/paKyjKqbr7PuS1gCekHQB\nqRut57M0awFz5qRBd1dcAbs3ORubWfkUU7I4Kh93MvAB0BM4qJxBmRksWAB77QUjR8JB/h9nFVZU\nbyhJawK9IuK58oe08twbytqL//4XBg1KSeKccyodjbVnpewNtT8wE7gjv+8vaWLzQzSz+nz0EQwd\nCrvsAj/6UaWjMUuKGZT3GGkup+kR0T/veyoiWt2s+S5ZWFu3ZElal2KNNdKyqKsU1QXFbOUVW7Io\npoF7cUS8o0+u0Viz0pGZWb0iUvfYhQvh+uudKKx1KSZZPC3pCGBVSX2AUwDPnG9WYuecA48/Dnff\nnUoWZq1JMd9dTiZNS/4xcB3wLvC/5QzKrKO59FK44QaYNMnrZ1vr1GibhaRVgWkR0SZ6eLvNwtqi\na6+FH/4Q7rsPNtmk0tFYR1OS3lARsQSokbROySIzs2XuuANOOw0mT3aisNatqBHcwCxJ0/I2QETE\nKeULy6z9e/hhOPJIuOUW2LLV9S00+6RiksXN+VVbv6OCbTNbCc8+m8ZSXHVVGk9h1tp5PQuzFjZv\nHuy8c5pu/JhjKh2NdXQlG8FtZqXz1ltpvqeTT3aisLal7MlCUidJMyXdVmf/9/JCSusV7DtL0guS\nnpU0uGD/AEmz8mdjyh2zWTm8/z7stx/svTeccUalozFbMS1RsjgVmE1BO4ekXsCewIsF+/oBw4B+\npPUyLtfyYeNXAMdHRB+gjySvp2FtyhtvwJ57wuabp2VRzdqaBhu465YE6oiI2L+pi0vqCewDnAec\nXvDRRcAPgFsL9g0FrouIxcBcSXOAgZJeBLpGxIx83DjgAGBKU/c3aw3++c9UmjjoIDjvPE/jYW1T\nY72hLizB9S8GzgDWqt0haSgwLyKerDPfVHfgoYL384AewOK8XWt+3m/W6s2YAQcckKbyOOmkSkdj\ntvIaTBYRUd2cC0vaD3g9ImZKqsr71gTOJlVBLTu0Ofepa9SoUcu2q6qqqKqqKuXlzYp2221w3HHw\nxz/C/k2Ww81aRnV1NdXV1St8XjFTlG8KjCbND9U5746I+GIT540GhgNL8nlrAZOBXUkr7kFadW8+\nMBA4Nl/4/Hz+FGAkqV1jekT0zfsPBwZFxHfquae7zlqrcMUV8JOfwK23wvbbVzoas4aVsuvsn4Df\nkqqDqoCxwDVNnRQRZ0dEr4joDRwG3B0RB0dEt4jonffPA7aJiNeAicBhklaX1BvoA8yIiAXAu5IG\n5gbv4cCEIuI2a3E1NXDWWXDxxXD//U4U1n4UM4K7S0TcqfS1/UVgVF4QaUUXe6zvK/+yfRExW9J4\nUs+pJcCIgmLCCOBqoAswKSLcuG2tzscfp2qnf/8bHngA1l+/0hGZlU4x1VAPkKqObgTuAl4Bfh4R\nm5U/vBXjaiirlHfegQMPhHXWgWuugS5dKh2RWXFKWQ31v8CapEWPtgWOBI5uXnhm7cfLL6f5nbba\nKq1J4URh7ZHnhjJrhieeSKOyTzstvVTSvn1m5dfsNbgljYmIUxsYnFfUoDyz9mzaNDjiCLjsMjj0\n0EpHY1ZejTVwj8t/1jc4z1/frUMbOxZ+8AO46SbYdddKR2NWfkVVQ0naACAi/lP2iJrB1VBWbhHw\ns5+ldSggMJazAAASJ0lEQVQmTYK+fSsdkVnzNLuBW8koSW8AzwPPS3pD0shSBmrWVixeDCeeCBMm\npK6xThTWkTTWG+o0YGdgu4hYNyLWBbYHdpZ0eiPnmbU7CxemKTvmzYN77oENN6x0RGYtq8FqKEmP\nA3vWrXrKVVLTImLrFohvhbgaysphwQLYd1/o3z9N47HaapWOyKx0SjHOYtX62ijyvmJGfpu1ec88\nAzvumGaO/cMfnCis42rsl/7ilfzMrM174w0YPTr1erroIjjaw1Ctg2usZPEVSe/V9wK2aqkAzVrS\nwoWpt9Pmm6e5np56yonCDBpfz6JTSwZiVkmLFqVqpp/9DKqq4KGH4MtfrnRUZq2H2x6sQ6upgeuv\nTyvZ9emTxk7071/pqMxaHycL65AiYMqUtPbEGmvAlVfC7rtXOiqz1svJwjqchx6CM89MXWJHj4Zv\nftMTAJo1pZgpys3ahWeeSYnhkENg+PDUeH3ggU4UZsVwsrB27+WX4fjjYdAg2GkneP759H5Vl6vN\niuZkYe3Wm2/C978PW28N3bqlJHHGGV6cyGxlOFlYu/P++6ktYrPN0vasWen9OutUOjKztqvsyUJS\nJ0kzaxdRkvRLSc9IekLSzZLWLjj2LEkvSHpW0uCC/QMkzcqfjSl3zNY2vfoqnHtu6gL75JPw4INp\nLqfu3SsdmVnb1xIli1OB2SxfMGkqsEVEfJU09flZAJL6AcOAfsAQ4HJpWdPjFcDxEdEH6CNpSAvE\nbW1ABNx7LwwbBv36pR5OU6emsRN9+lQ6OrP2o6zJQlJPYB/gSkAAETEtImryIQ8DPfP2UOC6iFgc\nEXOBOcBASRsCXSNiRj5uHHBAOeO21m/hQvjd7+CrX01rTOy8M8ydm0oSW25Z6ejM2p9y9we5GDgD\nWKuBz48Drsvb3YGHCj6bB/QgTVo4r2D//LzfOqDnnoPLL4e//AV22y1N8rfHHu7+alZuZUsWkvYD\nXo+ImZKq6vn8/4BFEXFtKe87atSoZdtVVVVUVX3q1tbGLFkCt98Ov/lNaov49rdh5kzYaKNKR2bW\n9lRXV1NdXb3C5xW1BvfKkDQaGA4sATqTShc3RcRRko4BTgD2iIiP8vFnAkTE+fn9FGAk8CIwPSL6\n5v2HA4Mi4jv13NOLH7Ujr7+epuH47W+hZ0/4n/+Bgw9O03OYWWmUYvGjZomIsyOiV0T0Bg4D7s6J\nYgipampobaLIJgKHSVpdUm+gDzAjIhYA70oamBu8hwMTyhW3VVZE6sV05JGp6+u//rV8zesjjnCi\nMKuUlhrDKpb3hvo1sDowLXd2ejAiRkTEbEnjST2nlgAjCooJI4CrgS7ApIiY0kJxWwv54IPUg+my\ny+Ddd+Gkk+DSS2G99SodmZlBGauhKsHVUG3Lm2/CXXelrq633goDB6aqpr32glU8XNSsRRRbDeVk\nYS1m8eI04+sdd6QE8eyzqUfT4MHwjW9A796VjtCs43GysIqLgDlzUmKYOhWqq9Pqc3vtlRLEjju6\nDcKs0pwsrCLeeWd51dLUqWm50sGD0+vrX4cNNqh0hGZWyMnCWsSSJTBjxvLkMGsW7LLL8gTRr58H\nzJm1Zk4WVhbvvZcGxs2cCXffDdOnw8YbL08Ou+wCnTtXOkozK5aThTVLBLzyCjz++Cdfr7wCW2yR\n5mTabTfYc0/4whcqHa2ZrSwnCyvakiVpYaDahDBzZvoToH//tHhQ7WvTTb3CnFl74mRh9Vq4MFUj\nFZYWnn4aevT4ZFLYemvYcEO3N5i1d04WHVBEGug2b94nX/Pnpz///e+0QNAWW3wyKWy1FXTtWuno\nzawSnCzamZqaNLFe3URQNymsuWYqJfTs+enXRhulcQ6uRjKzWk4WbcjSpanhuG5JoPD16qtpDen6\nkkDtq0ePlCzMzIrlZNHKLV6cBq/dcEOaF2mNNRpPBN27e7SzmZWek0UrtGjRJxPEZpvBIYfAQQd5\nIR8zqwwni1aiNkGMHw8TJy5PEAcfDL16VTo6M+vonCwqaNEiuPPOVIKYOBE233x5CcIJwsxaEyeL\nFrZoEUybtjxB9Ou3PEH07FmRkMzMmuRk0QI+/nh5grjtNicIM2t7nCzKpDZBjB8Pt9+eBrjVJoge\nPcp6azOzknOyKKGPP07Tb99wQ0oQW265PEF0717y25mZtZhik0XZVzqW1EnSTEm35ffrSZom6XlJ\nUyWtU3DsWZJekPSspMEF+wdImpU/G1PumAE++ii1PQwfnmZV/dWvYPvt4amn4N574bvfdaIws46j\n7MkCOBWYDdR+5T8TmBYRmwJ35fdI6gcMA/oBQ4DLpWXT2F0BHB8RfYA+koaUI9DaBHHkkWkSvQsv\nhIEDYfZsuOceOPlkJwgz65jKmiwk9QT2Aa4Ean/x7w+MzdtjgQPy9lDguohYHBFzgTnAQEkbAl0j\nYkY+blzBOc320UdpgFxtgrjoorQ2dGGC2HDDUt3NzKxtKveUchcDZwBrFezrFhGv5e3XgG55uzvw\nUMFx84AewOK8XWt+3r/SPvoIpkxJbRCTJqWZVw85JFU1eSEfM7NPK1uykLQf8HpEzJRUVd8xERGS\nStoiPWrUqGXbVVVVVFWlW3/44ScTxDbbpARx0UXQrVv91zIza2+qq6uprq5e4fPK1htK0mhgOLAE\n6EwqXdwMbAdURcSCXMU0PSI2l3QmQEScn8+fAowEXszH9M37DwcGRcR36rnnJ3pD1SaI8eNh8uTl\nCeLAA50gzMyglXWdlTQI+H5EfEPSBcCbEfGLnCDWiYgzcwP3tcD2pGqmO4Ev59LHw8ApwAzgb8Cl\nETGlnvvEBx8EkyenEsTkyTBgQEoQ3/ymE4SZWV3FJouWXAanNiudD4yXdDwwFzgUICJmSxpP6jm1\nBBhRUEwYAVwNdAEm1Zcoap1/Pvz97ylBjBkDn/98WZ7FzKxDaXeD8mpqwutGm5kVqdUMymtpThRm\nZqXX7pKFmZmVnpOFmZk1ycnCzMya5GRhZmZNcrIwM7MmOVmYmVmTnCzMzKxJThZmZtYkJwszM2uS\nk4WZmTXJycLMzJrkZGFmZk1ysjAzsyY5WZiZWZOcLMzMrElOFmZm1iQnCzMza1LZkoWkzpIelvS4\npNmSfp73by9phqSZkh6RtF3BOWdJekHSs5IGF+wfIGlW/mxMuWI2M7P6lS1ZRMRHwO4RsTXwFWB3\nSbsAvwDOiYj+wI+BCwAk9QOGAf2AIcDl0rJFUq8Ajo+IPkAfSUPKFXdrVV1dXekQysrP17b5+dq/\nslZDRcQHeXN1oBPwNrAAWDvvXweYn7eHAtdFxOKImAvMAQZK2hDoGhEz8nHjgAPKGXdr1N7/sfr5\n2jY/X/u3ajkvLmkV4DHgS8AVEfG0pDOB+yX9ipSsdsyHdwceKjh9HtADWJy3a83P+83MrIWUu2RR\nk6uhegK7SaoC/gicEhEbAacBV5UzBjMzaz5FRMvcSDoH+BD4cUSslfcJeCci1s4lDiLi/PzZFGAk\n8CIwPSL65v2HA4Mi4jv13KNlHsbMrB2JCDV1TNmqoSStDyyJiHckdQH2BH4CzJE0KCLuAb4GPJ9P\nmQhcK+kiUjVTH2BGRISkdyUNBGYAw4FL67tnMQ9sZmYrrpxtFhsCY3O7xSrAnyPiTkknAr+RtAap\npHEiQETMljQemA0sAUbE8mLPCOBqoAswKSKmlDFuMzOro8WqoczMrO1qlyO4JX1PUo2k9SodSylJ\n+qWkZyQ9IelmSWs3fVbrJ2lIHoj5gqQfVjqeUpLUS9J0SU9LekrSKZWOqdQkdcqDbG+rdCylJmkd\nSTfm/3ezJe1Q6ZhKKQ+EfjoPer421/jUq90lC0m9SO0jL1Y6ljKYCmwREV8ltfWcVeF4mk1SJ+Ay\n0kDMfsDhkvpWNqqSWgycFhFbADsA/9POng/gVFL1cXusphhDqvruSxpc/EyF4ykZSZsAJwDbRMRW\npLFwhzV0fLtLFsBFwA8qHUQ5RMS0iKjJbx8mdUlu67YH5kTE3IhYDFxPGqDZLkTEgoh4PG8vJP2y\n6V7ZqEpHUk9gH+BKoF11MMkl910j4iqAiFgSEf+tcFil9C7py8yaklYF1mT5IOlPaVfJQtJQYF5E\nPFnpWFrAccCkSgdRAj2Alwve1w7GbHfyN7n+pETfXlwMnAHUNHVgG9Qb+I+kP0l6TNIfJK1Z6aBK\nJSLeAi4EXgJeIQ1juLOh49tcspA0Ldev1X3tT6qWGVl4eIXCXGmNPN83Co75P2BRRFxbwVBLpT1W\nXXyKpM8CNwKn5hJGmydpP+D1iJhJG/y/VoRVgW2AyyNiG+B94MzKhlQ6kr4E/C+wCam0+1lJRzR0\nfFmn+yiHiNizvv2StiR9E3gizz/YE/iHpO0j4vUWDLFZGnq+WpKOIRX792iRgMpvPtCr4H0vPjm9\nS5snaTXgJuAvETGh0vGU0E7A/pL2AToDa0kaFxFHVTiuUplHqql4JL+/kXaULIBtgQci4k0ASTeT\n/k6vqe/gNleyaEhEPBUR3SKid0T0Jv1Fb9OWEkVT8my7ZwBD86y+7cGjpJmEN5G0Omnm4YkVjqlk\n8iwFfwRmR8QllY6nlCLi7Ijolf+/HQbc3Y4SBRGxAHhZ0qZ519eBpysYUqk9C+wgqUv+d/p1UkeF\nerW5ksUKaI/VG78mzeA7LZeeHoyIEZUNqXkiYomkk4E7SL0x/hgR7abHCbAzcCTwpKSZed9Z7XRg\naXv8P/dd4Jr8ReafwLEVjqdkIuIJSeNIX9hqSJO+/r6h4z0oz8zMmtRuqqHMzKx8nCzMzKxJThZm\nZtYkJwszM2uSk4WZmTXJycLMzJrkZGGtkqTP5WmvZ0p6VdK8vP2epMtKeJ9f5bXhiz2+u6Qbijju\nLkldVzCWTSTNWpFzyknS3PY2zb+tPI+zsFZP0kjgvYi4qMTX7QrcFRHbl/K6+donAF1XJOY80eBt\nebroipP0b2BAnnDOOjiXLKytEICkqtpFdiSNkjRW0r35W/CBuaTwpKTJedplJA2QVC3pUUlTJH0h\nX3MosGyWzXyN0bkE86ikbSRNlTRH0v/Lxyz79i/pGKVFqCZLel7SLwrinUgjawM0+bBS5zzb6ZN5\nxtOqvH9NSePzgjU3S3pI0oB6zj8/H/OEpF/mfd0k3SLp8fzaIe+/JT/vUznJ1RfPkZIezj+b3yot\nl2wdiP/Cra3rDewO7A/8BZgWEV8hre++b57E79fAQRGxLfAn4Lx87i6kqQ5qBfBiRPQH7iWt+/5N\n0qJF5zZw/68ChwJbAcOU1ncgIl4D1pf0mZV8rv8BluZnOZy0nv0apPXo38yLKZ0DDKDONBuSPgcc\nEBG1C2X9NH90KTA9IrYmzaZaOw/Qcflnsx1wiqR161yvb37GnfLPpgZocHZSa5/a89xQ1v4FMDki\nlkp6ClglIu7In80iTb28KbAFcGeeT6sTae5+gI2AV+tcc2LB+Z+JiPeB9yV9LGmtemK4KyLeA5A0\nG9iY5bPmvkaaRffZlXi2nUm/3ImI5yS9mJ9lZ+CSvP9pSfWt3fIO8JGkPwK35xekpHpkPreGtPgN\nwKmSDsjbvYA+wIz8XqQZjgcAj+afYRdgwUo8k7VhThbW1i2C9MtP0uKC/TWkf98Cno6InRo4v27p\n+uOC8xfVc726Pi7YXkpKRrXEp7/1H8DyNVeOj4jHGoir9vwV2Q9ATp7bk37JHwyczPIp7T9xbq7e\n2gPYISI+kjSdNN14XWMj4uzG7mvtm6uhrC0rZsGd54ANCurnV5PUL3/2IvCFBs5b2cV8Cs/rRp21\nOSJiQkT0z6/GEsV95KqePEX2RqRn+TupSoj8HJ9qDM9VX+tExGTgdFJVGcBdwEn5mE65pLQW8HZO\nFJuTqtw+EXI+72BJG+Rz15O0UeM/BmtvnCysrYiCP+vbhk9PkR15Xe+DgV9IehyYCeyYP7+ftABM\nfec3du2G7r/ss9yI/mauxloRtde7HFglVzNdDxwdEYvy/g0kPU1qi3gaqLsudFfgNklPkJLOaXn/\nqcDu+ZqPAn2BKcCquQrt58CDnwooTRn/I2BqvuZUGk6y1k6566x1WEpLnU6PiO3KcO0TSW0eF5f4\nuqsAq0XEx0rLYk4DNo2IJaW8j1ldbrOwDisiFkqaLmn3iJhe4ssPI3XNLbXPAHfnXl4CTnKisJbg\nkoWZmTXJbRZmZtYkJwszM2uSk4WZmTXJycLMzJrkZGFmZk1ysjAzsyb9f7OvE0+0Y33YAAAAAElF\nTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5dbcf50>"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex12-pg346"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate SC\n",
      "LL=40.\n",
      "Cc=0.009*(LL-10)\n",
      "H=10.*12.\n",
      "eo=1.0\n",
      "Gss=120.\n",
      "Gsc=110.\n",
      "Gd=100.\n",
      "To=10.*Gd +10.*(Gss-62.4)+10.*(Gsc-62.4)/2.\n",
      "\n",
      "Tt=0.408\n",
      "Tm=0.232\n",
      "Tb=0.019\n",
      "Tav= (Tt+4.*Tm+Tb)/6.\n",
      "Sc=Cc*H*math.log10((To+Tav*1000.)/To)/(1.+eo)\n",
      "print'%s %.3f %s'%('Sc =',Sc,' in')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Sc = 0.826  in\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex13-pg356"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#intilization variable\n",
      "#Calculate total primary\n",
      "import math\n",
      "H = 6.\n",
      "Cc = 0.28\n",
      "eo = 0.9\n",
      "Cv = 0.36\n",
      "To=210.\n",
      "Tp=115.\n",
      "Sc= Cc*H*math.log10((To+Tp)/To)/(1+eo)\n",
      "t2=9.\n",
      "Hd=3.\n",
      "Tv=Cv*t2/Hd**2\n",
      "U=0.67\n",
      "Tf=0.677*Tp\n",
      "print'%s %.1f %s'%('Tf =',Tf,' kN/m^2')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Tf = 77.9  kN/m^2\n"
       ]
      }
     ],
     "prompt_number": 7
    }
   ],
   "metadata": {}
  }
 ]
}