1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
{
"metadata": {
"name": "",
"signature": "sha256:e88cf5fadb0380ed068b9242245f52a6fc3119add2d6c78c60f47b1c3197bfc1"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter10-Stresses in a Soil Mass"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg257"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#principal stress and normal stresses and shear stresses\n",
"##initialisation of variables\n",
"sx= 2000. ##lb/ft^3\n",
"sy= 2500. ##lb/ft^3\n",
"T= 800. ##lb/ft^3\n",
"t= 0.348##radians\n",
"##calculations\n",
"s1= (sx+sy)/2.+math.sqrt(((sy-sx)/2.)**2+T**2)\n",
"s2= (sx+sy)/2.-math.sqrt(((sy-sx)/2.)**2+T**2)\n",
"sn= (sx+sy)/2.+(sy-sx)*math.cos(2.*t)/2.-T*math.sin(2*t)\n",
"Tn= (sy-sx)*math.sin(2.*t)/2.+T*math.cos(2*t)\n",
"##results\n",
"print'%s %.2f %s'% ('principle stress s1 = ',s1,' lb/ft^3 ')\n",
"print'%s %.2f %s'% ('principle stress s2 = ',s2,' lb/ft^3 ')\n",
"print'%s %.2f %s'% ('normal stress = ',sn,' lb/ft^3 ')\n",
"print'%s %.2f %s'% ('shear stress = ',Tn,' lb/ft^3 ')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"principle stress s1 = 3088.15 lb/ft^3 \n",
"principle stress s2 = 1411.85 lb/ft^3 \n",
"normal stress = 1928.93 lb/ft^3 \n",
"shear stress = 774.22 lb/ft^3 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg262"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate vertical stress increase\n",
"##initialisation of variables\n",
"x= 3. ##m\n",
"y= 4. ##m\n",
"P= 5. ##kN\n",
"z= 2. ##m\n",
"##calculations\n",
"r= math.sqrt(x**2+y**2)\n",
"k= r/z\n",
"I= 3./(2.*math.pi*((r/z)**2+1)**2.5)\n",
"s= P*I/z**2\n",
"##results\n",
"print'%s %.4f %s'% ('verticle stress increase at 2m = ',s,' kN/m^3 ')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"verticle stress increase at 2m = 0.0042 kN/m^3 \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg270"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the value of pressure and plot the graph\n",
"import math\n",
"%matplotlib inline\n",
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"from math import log\n",
"import numpy\n",
"from math import tan\n",
"import matplotlib\n",
"from matplotlib import pyplot\n",
"#given\n",
"p=numpy.array([-9,-6,-3, 0,3,6,9])\n",
"e=numpy.array([0.017,0.084,0.480,0.818,0.480,0.084,0.017])\n",
"\n",
"#calculations\n",
"\n",
"\n",
"#results\n",
"\n",
"pyplot.plot(p,e)\n",
"pyplot.xlabel('Pressure (ton/ft^2)')\n",
"pyplot.ylabel('void ratio ,e')\n",
"pyplot.title('Graph of pressure vs void ratio')\n",
"pyplot.show()\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecFPX9x/HXOxTFXrBiIcYGFiQaxH6KUaxYIEqMKfpT\nTMReECNwaGIJ0dgrKgkqICCIEYP1VGyA9CqoKMWCKIigSPn8/vjOcutx/XZutnyej8c92Jmdnf2w\ntzef+XaZGc4559zPkg7AOedcdvCE4JxzDvCE4JxzLuIJwTnnHOAJwTnnXMQTgnPOOcATgssAScWS\n+mfoXNtJekPSt5L6ZOKcrvokjZR0bgXPNZe0VlJs1w1JD0i6Ia7zu8o1TDoAl3mSzgauAPYBlgMf\nA/82swdiestMDma5EPjSzDbL4DldNZnZifX1XpL+CJxvZkekvf+f6+v93fq8hJBnJF0F3AncBmxn\nZtsBFwGHSWpcwWvq+j1QHV+fbldgRiZOJCnxGx5JDZKOIQnZ8Nm7WjAz/8mTH2Bz4Dvg9CqO6wc8\nAIyMjj8GOAmYACwFPgV6pR3fHFgLXAAsABYCV6U93wsYBPwb+BaYChxYyfsfCowFlgBjgEPS4voR\nWAksA46pIPYHgRej9yoBdkl7fi3wF2A28GG072RgIvAN8BawX9rx3YD50blmpt4TaAOMiz6Pz4Hb\no/1FwLwyMc1Ne10xMAToH732vOj38mj0uc0HbgJ+Vs7/bUdgBbBl2r7WwCKgAbA78Hr0uS0CBlbw\n+b4AXFxm3yTgtMo+/+i5EsJdO9F7/jN6rw+Bi6PPd73Y0z6Ha4HJwPfR668D5kSf77S0GFpEx6yO\nftdfp/1+b0o75wXR73Ix8CywQ9J/Z/n8k3gA/pPBXya0B1ZV9Aebdly/6GKQuhBvABwF7BNt7xdd\nBDtE282jC8GTQBNgX+BLoF30fHH0x92eUFq4GXingvfeinBhPodQQj0b+Dp1EQQeB26sIvZvgcOB\nxoTS0Jtpz68FRgFbRP+v1sAXwK+i2H5PqEJrBOxFSH7bR6/dBdgtevwOcE70eCOgTfS4iPUTwsf8\nNCH8CJwabW8IDCMk4CbANsB7wIUV/P9eAf4vbbsPcH/0eADQPXrcGDi0gnOcC4xO224ZfeaNqvH5\nvwacFz2+iFBaawZsGT23hsoTwvjo+A2ifR3TPt/fEG5Atou2/5D+uyv7+yfcqCwCDoj+v3cDryf9\nd5bPP15llF+aAl+Z2drUDklvS/pG0gpJh6cdO9zM3gEws5Vm9rqZTYu2pwADCUkiXW8z+97MphL+\ncDunPfemmf3Pwl/yE0CrCmI8CZhlZk+a2VozG0i4Mz817ZiqqqD+a2ajzexH4K/AIZKapT1/i5kt\nMbOVhDaJh8xsrAX/IZRADiHcnW4A7COpkZl9amYfRef4EdhDUlMzW2FmY6qIKd3bZjYierw5cAJw\nRfTZLSIksbMreO1TRJ+rJAFnRftSMTWX1MzMfjSztys4x3DgAEk7R9vnAEPNbBXV+/xTfgP8y8wW\nmNk3hERf2e/GgLuj41cCmNkQM/s8evw04W7/4Oj4qn7P5wCPmtnE6HfdnfC73qWK17la8oSQXxYD\nTdPbBMzsUDPbMnoutd+AeekvlHSwpNckfSlpCdAF2LrM+dNf8ymhiiPli7THK4ANK2ib2DF6bbpP\nypyrMkaodgkbZssJd7jpr0+Pc1fgqigpfiPpG2AnQtXDh8DlhLv6LyQNkLRD9LrzgT2BGZLGSDqp\nmvGRHl/0/o2Az9Le/0FCSaE8zxAuetsDRwJrzWx09Ny1hIvoGElTJf2pvBOY2TLgeUoT9tmE0h3U\n7PPfgfV/51Up+736vaQJaf/3fVn/e1WRHaLYgHW/68WEEoiLgSeE/PIO4e73tFq89inCneVOZrYF\n4aJV9vuxS5nHC2rxPgsIF8l0u9bgXAJ2XrchbUKoBlmYdkx6r6dPgb+b2ZZpP5uY2SAAMxtgoZfL\nrtHrbov2zzGz35rZNtG+IZKaEHptbZT2/g1Y/+Ke/v7zCL+TrdPef3Mz26+8/1x0J/4ioWTwW0I1\nUeq5L8zsQjNrRkjY90varYLPaQDQWdIhwIZm9lq0vyaf/2es/zuvyrr/u6RdgYcJbQ9bRTcmUykt\nGVTVO20hoboydb6NCcmkNt87Vw2eEPKImS0BehMuFGdK2lTSzyQdAGycdmh5RfVNgG/M7EdJbQgX\no7J/sDdIaiJpH+CPhIbkmhoJ7Cmps6SGks4C9gb+W0lsZZ0oKdVr6iZCe0VFF4lHgIsktVGwsaST\nJG0iaU9Jx0jagHDR/oFQR46k30lKXeiXEj6LtcAHhNLPiZIaATcQqp3KZWafES7wd6T9Pn4h6chK\n/n9PEerXz6S0ughJnSTtFG0uSYupPCMJF/rehOq/9P2Vff7pngYuldRM0paEBuKa2DiK8SvgZ1GJ\nZt+0578Adoo+xxRR+h0YAPxJUqvod3Qz8K6ZVaek4mrBE0KeMbM+wJWE6oXPo58Ho+13Uoex/sX+\nL8CNkr4FelD+xf51Qo+Rl4E+ZvZyJecr9+7PzL4m9Pq5inChuBo4Odpf0bnKnvcpQs+mxYRG499V\n9L5m9j6hp8q9hKql2YSGZQgX8lsIDZefEdpgukfPHQ9MlbQM+BdwdtTWspTwWfUlVA19x0+rScqL\n//eERtHpUQyDge0r+T+OIPQo+ixqz0k5CHg3iulZ4FIzm1veCaI692eAdqQllWp8/ukeITTQTyL0\nuBpazv+tQmY2Hbid8L37nJAMRqcd8gqh59Hnkr5MvSz1Hmb2CuG7OJRQWvg5Fbe9uAxQaAOM6eRS\ne0IDWgOgr5ndVub5LYHHgN0Id2fnpRo2XfaQ1Bz4CGiY3mCdUCyPA/PNrEeScTiXj+Icgt6AcFfW\nntDtrbOkFmUOux4Yb2atCHdRd8UVj8sbmRwE55xLE2eVURtgjpnNjbq7DQQ6lDmmBaFvM2Y2i9Cl\nrqLeFy5Z2bLWalVVSs65WopzeHkzflq3Op/S/scpk4AzgNFRQ+auhC6Bi2KMy9VQVE+dFVMwmFm5\nXS2dc3UXZwmhOndxtwJbSJoAdCVMnbAmxpicc85VIM4SwgLS+otHj9MH7KQG0JyX2pb0MaHx8ick\neRWBc87VgplVu90tzhLCOMLQ/+ZRf/GzCN3p1pG0eWoGTkkXEOYp+a68k8Uxb0eh/vTq1SvxGPLl\nxz9L/zyz+aemYishmNlqSV0J/ZgbEOYkmSGpS/T8Q4TeR/2iEsBUwnQBzjnnEhDrnOVm9gJhKt70\nfQ+lPX6HMOOkc865hPlI5QJUVFSUdAh5wz/LzPLPM1mxjlTOFEmWC3E651w2kYRlSaOyc865HOIJ\nwTnnHOAJwTnnXMQTgnPOOcATgnPOuYgnBOecc4AnBOeccxFPCM455wBPCM455yKeEJxzzgGeEJxz\nzkU8ITjnnAM8ITjnnIt4QnCulpYuhcceSzoK5zIn1oQgqb2kmZJmS+pWzvNNJf1P0kRJUyX9Mc54\nnMukG26A88+Hl15KOhLnMiO2hCCpAXAv0J6wVGZnSS3KHNYVmGBmBwBFwO2SYl3FzblMmDgRnn4a\n+vWDSy6BH39MOiLn6i7OEkIbYI6ZzTWzVcBAoEOZYz4DNosebwYsNrPVMcbkXJ2tXQtdu8JNN8Ef\n/gB77AH/+lfSUTlXd3EmhGbAvLTt+dG+dI8A+0haCEwCLosxHucyon9/WLkyVBcB3HUX9OkD8+ZV\n/jrnsl2c1TPVWfPyemCimRVJ+gXwkqRWZras7IHFxcXrHhcVFfnaqy4RS5bAddfBiBHQoEHYt9tu\nocRw1VWhGsm5pJSUlFBSUlLr18e2prKktkCxmbWPtrsDa83strRjRgJ/N7O3ou1XgG5mNq7MuXxN\nZZcVLr0UfvgBHn74p/u//x722SfsP/bYZGJzrqxsWlN5HLCHpOaSGgNnASPKHDMTOBZA0nbAXsBH\nMcbkXK1NmgQDB8LNN6//XJMmcOedoaTgDcwuV8WWEKLG4a7AKGA6MMjMZkjqIqlLdNjNwEGSJgEv\nA9ea2ddxxeRcbZnBxReHhuSmTcs/5pRTYPfdQ2JwLhfFVmWUSV5l5JL2n//A3XfDe++Vth2U58MP\n4eCDQ7fUnXaqv/icK09Nq4w8IThXhaVLoUULGD4c2rSp+vhevWDmTBg0KP7YnKuMJwTnMuzyy2H5\ncnjkkeod//330LIl9O0L7drFG5tzlfGE4FwGTZ4ceg1Nn15x20F5nn02dE+dNAkaN44vPucqk029\njJzLaamG5BtvrFkyADj11DA+4a674onNuTh4CcG5CvTvH3oMjRlTeUNyRebMgbZtvYHZJcerjJzL\ngFRD8rBhoddQbfXoAbNnh/ELztU3TwjOZcAVV8CyZaFhuC5WrAgjmB99FI45JjOxOVddnhCcq6Mp\nU0LvoGnTYJtt6n6+4cPh+utD1ZE3MLv65I3KztVBqiG5d+/MJAOADh2gefMwsM25bOYlBOfSPPFE\nWNugtg3JFUk1ME+aBM3KTgLvXEy8ysi5Wvr229CQPHRouHhn2g03hKktBgzI/LmdK48nBOdq6cor\nQ++iRx+N5/wrVoQRzI8/DkcfHc97OJfOE4JztTBlSugFNH165toOyjNsWCgpTJwIjRrF9z7OgTcq\nO1djZmEdg0w2JFfktNNg5529gdllJy8huIL31FPwz3/C2LGZbUiuyOzZcMghYZ6kHXeM//1c4fIq\nI+dqINWQPGRIuEjXl7/+FT7+OCQj5+KSVVVGktpLmilptqRu5Tx/taQJ0c8USaslbRFnTM6l690b\njj++fpMBhIFqb70FdVgP3bmMi62EIKkBMIuwZvICYCzQ2cxmVHD8ycDlZrbeEuVeQnBxmDo19PaZ\nNg223bb+3/+ZZ8JcR97A7OKSTSWENsAcM5trZquAgUCHSo7/LeA9tF29SDUkFxcnkwwATj89zIJ6\nzz3JvL9zZcWZEJoB89K250f71iNpI+B4YGiM8Ti3zsCBYczBRRclF4MUksHNN8PChcnF4VxKwxjP\nXZM6nlOA0Wa2pKIDiouL1z0uKiqiqKio1oG5wvbtt3D11TB4cP30KqrMnnvChRfCNdfAk08mG4vL\nfSUlJZTUoWEqzjaEtkCxmbWPtrsDa83stnKOHQYMMrNyZ433NgSXSVdfDYsXhxHD2WD58tDTqX9/\nOOqopKNx+SRrup1KakhoVG4HLATGUE6jsqTNgY+Anczs+wrO5QnBZcS0aVBUlFxDckWGDoVevWDC\nBG9gdpmTNY3KZrYa6AqMAqYTSgAzJHWR1CXt0NOAURUlA+cyJdWQ3LNndiUDgDPOCIPU7r036Uhc\nIfOBaa5gDBwIt94K48ZBwzhbz2pp1iw47LAwr9IOOyQdjcsHWVNllEmeEFxdLVsW6ukHDQoX3WzV\nvTvMmxfWZXCurjwhOFeOa66BRYugX7+kI6lcqoH5iSfgyCOTjsblOk8IzpUxfXrovTN1Kmy3XdLR\nVG3IkDClxvjx3sDs6iZrGpWdywaphuQePXIjGQCceSZsvz3cd1/SkbhC4yUEl9cGDQojgd9/Pzsb\nkisycyYccUSYItsbmF1teZWRc5FUQ/LAgXD44UlHU3PXXQcLFoQBa87VhicE5yLXXgtffAH//nfS\nkdTOd9+FhPbUU6G04FxNeUJwDpgxI/TSyZWG5Io8/TT87W+hgTmXqrxcdvBGZVfwUg3JN9yQ28kA\noFOnMKraG5hdffASgss7+XZXnSrtTJkSeh85V11eZeQKWr7Wu3frBp9/nrvtIS4ZnhBcQevWLSw2\nk289c1KJbsCA3Owx5ZLhCcEVrHyvWsnVMRUuOd6o7AqSGVxyCfz1r/mZDAB+8xto2hTuvz/pSFy+\n8hKCywuDB8NNN+VPQ3JF8qU7rasfXmXkCk6qfv3JJwtjhtBcmbnVJS+rqowktZc0U9JsSd0qOKZI\n0gRJUyWVxBmPy09/+1uYzbQQkgGEFd9efhneeivpSFy+iXNN5QaENZWPBRYAYymzprKkLYC3gOPN\nbL6kpmb2VTnn8hKCK9fMmaHXTaGtMpbtq7+57JBNJYQ2wBwzm2tmq4CBQIcyx/wWGGpm8wHKSwbO\nVSS9IbmQkgHAWWfBVlvBAw8kHYnLJ3EmhGbAvLTt+dG+dHsAW0l6TdI4SefGGI/LM0OHwmefhWkq\nCo0E99wDN94YJvBzLhPiLGxWp46nEfBLoB2wEfCOpHfNbHbZA4uLi9c9LioqoqioKDNRupy0fDlc\neWUYgFaoq4rtsw/84Q9hmuzHH086GpcNSkpKKCkpqfXr42xDaAsUm1n7aLs7sNbMbks7phvQxMyK\no+2+wP/MbEiZc3kbgvuJ7t3h009Dz6JCllrz4emn4dBDk47GZZtsakMYB+whqbmkxsBZwIgyxzwL\nHC6pgaSNgIOB6THG5PLArFnwyCPQp0/SkSRv003D53DxxbBmTdLRuFwXW0Iws9VAV2AU4SI/yMxm\nSOoiqUt0zEzgf8Bk4D3gETPzhOAqZAaXXgrXXw877ph0NNnh7LNh883hwQeTjsTlOh+Y5nLK0KHQ\nqxdMmFC4bQflmTYNiorCv9tum3Q0Llv4SGWXt5Yvh5YtwxTQ3qdgfVddBd98A489lnQkLlt4QnB5\n6/rrYe7csNaBW9+334YG5iFD4JBDko7GZQNPCC4vffBB6EUzebK3HVTmqafgn/+EsWOhQYOko3FJ\ni62XUdQLyLl6lxqR3L27J4OqdO4Mm20GDz2UdCQuF1WZECQdKmk6YV4iJB0gyWdkd/Vm2DCYPz/0\nLnKVk+Dee6G4OMyI6lxNVFllJGkM0BF41sxaR/ummdk+9RBfKgavMipQqYbkfv3g6KOTjiZ3XHkl\nLF0Kjz6adCQuSbFUGZnZp2V2ra5RVM7V0s03h7YDTwY1U1wML7wA77yTdCQul1RnLqNPJR0GEI04\nvhSYUflLnKu72bNDXfikSUlHkns22yyMYO7aFcaM8QZmVz3VKSH8GbiYMFPpAqB1tO1cbFINyddd\nB83KzpHrquW3v4VNNoGHH046EpcrvNupy0rDhoV1DiZN8hHJdTFlCrRrF0Ywb7NN0tG4+hb7OARJ\nFwNfERa2qZe2BE8IhWXFitCQ/NhjcMwxSUeT+664IsyK2rdv0pG4+lYfs50KOAIYVovXOlelW26B\ntm09GWRKcTGMHAnvvpt0JC7beZWRyyqzZ4dpFyZOhJ12Sjqa/NG/P9x5pzcwF5psWg/BuRoxg8su\ng27dPBlk2u9+BxttFNaRcK4iXkJwWWP48DA9xaRJ0Lhx0tHkn8mT4dhjYfp0aNo06WhcfciqEoKk\n9pJmSpodLZdZ9vkiSUslTYh+bogzHpe9VqyAyy8P0y54MojH/vuHrqjduycdictW1Zm6ojFhLMKR\n0a4S4EEzW1XF6xoQ5j86ljB+YSzQ2cxmpB1TBFxpZqdWcS4vIeS5nj3D0piDBiUdSX5bujRMkT1s\nGBx8cNLRuLjFUUJ4APglcB9wP3BgtK8qbYA5ZjY3Sh4DgQ7lHFftYF1+mjMH7r8fbr896Ujy3+ab\nw623+hrMrnzVSQi/MrM/mNmrZvaKmf2RcLGvSjNgXtr2/GhfOgMOlTRJ0khJLasVtcsbqYbka6/1\nhuT6cu650KSJj0tw66vOXEarJe1uZnMAJP2C6k1uV506nvHAzma2QtIJwHBgz2q8zuWJ556Djz4K\nVRiufqSmyD7uODjzTG9gdqWqkxCuAV6V9HG03Rz4UzVetwDYOW17Z0IpYR0zW5b2+AVJ90vaysy+\nLnuy4uLidY+Liooo8kV1c97334fSwSOPeENyfWvVCs46KyxL6nMd5Y+SkhJKSkpq/fpqdTuVtCGw\nF+Guf5aZrazGaxoSGpXbAQuBMazfqLwd8KWZmaQ2wNNm1rycc3mjch7q1QtmzICnn046ksK0ZElo\nYH72WWhTnUpgl3Nq2qhcYQlBUjsze0XSmYREkDrp7tGbPFPZic1staSuwCigAfComc2Q1CV6/iHC\nwjt/lrQaWAGcXd3AXW778MNQbTFxYtKRFK4ttihtYH73XR/B7CopIUjqbWa9JPWjnPYAM6tOtVFG\neAkh/5x8MhxxRBiV7JKzdi0ceST8/vdw4YVJR+MyLeOznUrazcw+qmpfnDwh5Jfnn4errgojZ73t\nIHmTJoUG5pkzYcstk47GZVIc4xCGlLNvcPVDcq7U2rVhnYNbb/VkkC1atYKTToI77kg6Epe0ytoQ\nWgAtgS0knUFoQzBgM2DD+gnP5ZtnnoGGDaFDeUMUXWJ69ICDDgq9vrwbauGqrA2hA3A6cAowIu2p\nZcBAM3s7/vDWxeJVRnlgzZown06fPnDiiUlH48q66KIwkvm225KOxGVKHG0Ih9bnxb+CGDwh5IGn\nnoJ77oG33w6Do1x2mTcvVB/NmAHbbZd0NC4T4kgITYDzCdVHTYh6HJnZeXWIs0Y8IeS+1athn33g\nvvvCFMwuO116aajS8/aE/BBHo3J/YDugPWGm052B72oVnStYTz4J228fFnx32at7d+jXDxYuTDoS\nl4TqlBAmmtkBkiab2f6SGgGjzazeJs/1EkJuW7UK9t4bHnsMjjoq6WhcVa66ClauDAMHXW6Lo4Tw\nY/TvUkn7AVsA29QmOFeY+vWDn//ck0Gu6NYNBgyATz9NOhJX36pTQvg/4BlgP6AfsAnQw8wejD26\n0hi8hJCjVq6EPfeEgQPhkEOSjsZVV/fusHixT3yX6zLaqCzpZ0AnM0t0HStPCLnrvvvCyOSRI5OO\nxNXE4sUhkY8dC7vtlnQ0rrbi6GX0vpkdWOfI6sATQm76/nvYffcwm+ZBByUdjaupXr3gk09ClZ/L\nTXEkhFuBr4BBwPLU/vLWLIiLJ4Tc9K9/weuvw/DhSUfiamPJEthjDxg9GvbaK+loXG3EkRDmsv5s\np2Zm9VaQ9ISQe5Yvh1/8Al58MYxOdrnp73+HadPCoEKXezKeELKBJ4Tcc9tt8P77vvhNrlu2LFT7\nvfIK7Ltv0tG4mvKE4BL37bfhIlJSAi1bJh2Nq6s+fWDMGBjscxznnDjGIdQlmPaSZkqaLanCpVAk\n/UrS6mhWVZfj7r47zK/vySA/XHwxvPWWr25XCGIrIUhqQFhT+VhgATCWMmsqpx33EmEJzcfNbGg5\n5/ISQo5INUS+/Xb41+WHu+6CV18NPcZc7sjkmsoHUrqWcnlLaI6v4txtgDlmNjc630CgAzCjzHGX\nEBbh+VV1g3bZ6447wvKYngzyS5cuoepo7Fj4lf+l5q0KEwJwOyERNAEOBCZH+/cHxgFVjTttBsxL\n254P/GT+I0nNCEniGEJC8GJADlu8OAxEGzcu6Uhcpm24IVx/PfTsCS+8kHQ0Li4VtiGYWZGZHQ0s\nBH5pZgdGA9RaR/uqUp2L+53AdVF9kKIfl6P69IGOHcO8RS7/nH8+TJ8eqgNdfqqshJCyt5lNSW2Y\n2dRoec2qLCBMlZ2yM6GUkO5AYKDCailNgRMkrTKzEWWOo7i4eN3joqIiioqKqhGCqy9ffBHmvZk0\nKelIXFw22CAstdmjR+iG6rJPSUkJJSUltX59dQamDSSsf/AE4Q7+t8AmZta5itc1JDQqtyOUKMZQ\nTqNy2vGPA8+Z2TPlPOeNylnuyivDNNf33JN0JC5Oq1ZBixbQty/4PVn2y1ijcpo/AX8GLou23wAe\nqOpFZrZaUldgFNAAeNTMZkjqEj3/UHWDdNlt4cIw3820aUlH4uLWqFFoR+jRA954w5dCzTc+MM3V\nWdeuoTrh9tuTjsTVhzVrwnKoqfEmLntlbKSypMFm1knSlHKeNjOrtxlqPCFkr08/hdatw8Ls226b\ndDSuvgwcCHfeCe+846WEbJbJhLCjmS2U1Ly851PjC+qDJ4Ts1aULbLUV3HJL0pG4+rR2LbRqBbfe\nCiedlHQ0riKxzGUkaTvCQDMDxpjZl7UPseY8IWSnjz4Kg5Q++AC23jrpaFx9e+aZMBvquHFeSshW\nGZ/LSNJvCD2EOgG/AcZI6lT7EF2+uOmmMM+NJ4PCdNppoaTg613kj+p0O50MHJsqFUjaBnjF2xAK\n2wcfwGGHwezZsMUWSUfjkvLcc2EE86RJ8LNYp8p0tRHHbKcCFqVtL8ZHFBe83r3hsss8GRS6k0+G\njTbyqbHzRXVKCH2AVsBThERwFjDZzK6NP7x1MXgJIYtMmwZHHw0ffgibbpp0NC5po0bB5ZfD1KnQ\noEHS0bh0cTUqnwkcTmhUftPMhtU+xJrzhJBdOnUKjcnX1tstgctmZnDEEaHH2bnnJh2NSxfHmspX\nAQPNbEFdg6stTwjZY+JEOOEEmDMHNt446WhctnjtNbjggjAepVGjpKNxKXG0IWwKvChptKSuURdU\nV6B69YJu3TwZuJ86+mjYZRf4z3+SjsTVRbWnrpDUitDttCMw38zaxRlYmff2EkIWGDcudDWcMyfM\nj+9curfegnPOCT3QGjdOOhoH8a6p/CXwOaGX0TY1Dczlvp49QxdDTwauPIcdBnvvDY89lnQkrraq\n04bwF0LJYFtgMDDIzKbXQ2zpMXgJIWHvvANnnx3u/jbYIOloXLYaMwbOPDOMT/Ebh+TFUULYGbjc\nzFqaWa/6TgYuO6QWRvFk4CrTpk2Y7PDhh5OOxNWGT3/tqvT663DeeTBzpvcgcVWbMCFMeDdnThi0\n5pITZxuCK0BmoWTQs6cnA1c9rVvDIYfA/fcnHYmrqVgTgqT2kmZKmi2pWznPd5A0SdIESe9LOibO\neFzNvfxyWC/5nHOSjsTlkt69oU8fWLYs6UhcTcRWZSSpAWFN5WOBBcBYyqypLGljM1sePd4PGGZm\nu5dzLq8ySoBZuNO77DLoXOkK2s6tr3Nn2G+/0DPNJSObqozaAHPMbK6ZrQIGAh3SD0glg8gmwFcx\nxuNqaORI+O47OOuspCNxuai4GP71L1i6NOlIXHXFmRCaAfPStudH+35C0mmSZgAvAJfGGI+rAbPQ\nbtC7t09r7Gpnr73gxBNDUnC5oWGM565WHY+ZDQeGSzoC6A/sVd5xxcXF6x4XFRVRVFRU9whdhZ59\nNix+cvokpIWZAAATLklEQVTpSUficlnPnnDwwXDppWGpVRevkpISSkpKav36ONsQ2gLFZtY+2u4O\nrDWz2yp5zYdAGzNbXGa/tyHUo7Vr4YADwvKIp5ySdDQu111wAWy7bfg+ufqVTW0I44A9JDWX1Jiw\njsKI9AMk/UIKq7FK+iVA2WTg6t+QIdCkSVj8xLm6uuEGePBBWLSo6mNdsmJLCGa2GugKjAKmE6a8\nmCGpi6Qu0WFnAlMkTQDuAs6OKx5XPWvWhMbAG2/0hdNdZuy6a5j25B//SDoSVxUfqex+4oknwt3c\nm296QnCZs2BB6II6fTpsv33S0RSOWFZMS5onhPqxejW0aAEPPQTH+BBBl2GXXx56r911V9KRFA5P\nCK7WHnsM+vcPq185l2mffw4tW8LkybDTTklHUxg8Ibha+fHH0G+8f384/PCko3H56tprw3QWDzyQ\ndCSFwROCq5UHH4Rhw2DUqKQjcfnsq6/Cjcf770Pz5klHk/88Ibga++EH2GMPGDo0zGfvXJxuuAE+\n+wwefTTpSPKfJwRXY3ffDS+9BM89l3QkrhB88024AXn3Xdh9vaksXSZ5QnA1smJF+KN8/vkwj71z\n9eHGG8MCOv/5T9KR5DdPCK5Gbr8d3n47VBc5V1++/TbciLzxBuy9d9LR5C9PCK7avvsu/FG+/DLs\nu2/S0bhCc+utMHEiDByYdCT5yxOCq7Zbbgl9wgcMSDoSV4hSNyQvvRRGMbvM84TgqmXp0vDH+Oab\nXmR3ybnjDhg9Gp55JulI8lM2zXbqstidd8IJJ3gycMm66KLQ22j8+KQjceAlhIL09dew557e7c9l\nh3vuCQMi//vfpCPJP15CcFW6/XY47TRPBi47XHBBaMt6992kI3FeQigwixaFaqLx48M89c5lg4ce\nCl2fX3wx6Ujyi5cQXKX+8Q846yxPBi67/OlPMHt26OTgkhN7QpDUXtJMSbMldSvn+XMkTZI0WdJb\nkvaPO6ZC9fnnYf6Yv/416Uic+6nGjaFnz/DjkhNrQpDUALgXaA+0BDpLalHmsI+AI81sf+Am4OE4\nYypkt94Kv/89NGuWdCTOre/cc8PKaq++mnQkhSvWNgRJhwC9zKx9tH0dgJndWsHxWwJTzGynMvu9\nDaGO5s+HVq1g2jRfwtBlryefhPvvD2MTfAnXusu2NoRmwLy07fnRvoqcD4yMNaICdfPNcP75ngxc\ndjv7bFiyxNflSErDmM9f7dt6SUcD5wGHlfd8cXHxusdFRUUUFRXVMbTC8cknMGgQzJqVdCTOVa5B\nAyguhh494PjjvZRQUyUlJZSUlNT69XFXGbUFitOqjLoDa83stjLH7Q88A7Q3sznlnMerjOrg//4v\nlAz+9rekI3GuamvXhqnYb7oJTj016WhyW1bNZSSpITALaAcsBMYAnc1sRtoxuwCvAr8zs3KHpnhC\nqL05c6BtW/jgA9hqq6Sjca56hg8PJYXx4+Fn3jm+1rKqDcHMVgNdgVHAdGCQmc2Q1EVSl+iwnsCW\nwAOSJkgaE2dMhebGG+GSSzwZuNzSoQM0bOiT3tU3H6mcx2bOhCOOCKWEzTdPOhrnambkSLjmmjCt\nRYMGSUeTm7KqhOCSVVwMV17pycDlphNOgM02Cx0iXP3wEkKemjIFfv3rUDrYZJOko3Gudl5+GS6+\nOIyfaRh3n8g85CUEB4TSwTXXeDJwua1du9BD7sknk46kMHgJIQ9NmAAnnxwmC9too6Sjca5u3ngj\nTH43cyY0apR0NLnFSwiOnj3huus8Gbj8cOSRsNtu0K9f0pHkPy8h5Jn33oNOncK4gw03TDoa5zLj\n3XfDtO0ffAAbbJB0NLnDSwgFrmfPML21JwOXT9q2hX33hb59k44kv3kJIY+MHh2mEJ41K8wv71w+\nef/9MJXFnDnQpEnS0eQGLyEUsB49wo8nA5ePDjwQfvUrePDBpCPJX15CyBOvvgpdusCMGd5f2+Wv\nyZPhuOPgww9h442Tjib7eQmhAJmFkkGvXp4MXH7bf//Q6+jee5OOJD95CSEPjBoFV1wRRif7nC8u\n302fDkVFoS1hs82Sjia7eQmhwKRKB8XFngxcYWjZMlQb3X130pHkHy8h5LjnnoMbbgijk33eeFco\nZs+GQw8N/26xRdLRZC8vIRSQtWvDuIPevT0ZuMKyxx5wyilwxx1JR5JfvISQw4YOhVtugbFjfe1Z\nV3g+/jh0Q501C7beOuloslPWlRAktZc0U9JsSd3KeX5vSe9I+kHSVXHHky/WrAm9im680ZOBK0w/\n/zl07Ah9+iQdSf6Ie03lBoQ1lY8FFgBjWX9N5W2AXYHTgG/M7PZyzuMlhDIGDAiNam+/7QnBFa55\n86BVqzD+Zrvtko4m+2RbCaENMMfM5prZKmAg0CH9ADNbZGbjgFUxx5I3Vq8OvYq8dOAK3c47wznn\nwG23JR1Jfog7ITQD5qVtz4/2uTp48slwN3TssUlH4lzyrr8+TI29cGHSkeS+uMe1Zqyep7i4eN3j\noqIiioqKMnXqnLJqVSgZPPaYlw6cA9hhh7CAzs03+wjmkpISSkpKav36uNsQ2gLFZtY+2u4OrDWz\n9Qp4knoB33kbQuX69oWBA8Nas8654MsvoUWLMB5nl12SjiZ7ZFsbwjhgD0nNJTUGzgJGVHCs3+9W\nYeVKuOmm8OOcK7XttnDhhfD3vycdSW6LfRyCpBOAO4EGwKNmdoukLgBm9pCk7Qm9jzYD1gLLgJZm\n9l3aOQq+hLBwYeheN2sWjByZdDTOZZ/Fi2GvveC++8KgNV9CtuYlBB+YlsXmzw+DzwYPDhN6nXJK\nGHuw225JR+Zcdho5Eu68E8aMCfMddeoEJ55YuFNle0LIcfPmwZAhIQnMmhVWiOrUKfQo8oVvnKue\nr76C4cPD39G778Kvfx3+jk46CTbZJOno6o8nhBz0ySelSWDOHOjQIXx5jznGk4BzdbV4MTz7bPj7\nevttaNcu/H2dfDJsumnS0cXLE0KO+PjjkASGDIGPPoLTTgtf0qOPhkaNko7Oufz0zTelyWH06HDT\n1bFjqI7Nx7UVPCFksY8+Cl/EIUNCqeD000MSOOooTwLO1bclS2DEiPA3+cYbYdGdjh1DNe3mmycd\nXWZ4Qsgyc+aUJoH58+GMM0ISOPJIX+7SuWyxdGlYW2TwYCgpCX+fHTuG6ttcXm/BE0IW+OCD0iTw\n2Wdw5pnhy3Xkkb6qmXPZ7ttv4b//DX/Dr74Khx9emhy22irp6GrGE0JCZs4sTQKLFpUmgcMP9yTg\nXK5atgyefz78bb/8clilrWPH0OaXC2sweEKoR9Onl/YO+vrrkAQ6dYLDDvMVzJzLN999F5LDkCHw\n4ovQtm1IDqefDk2bJh1d+TwhxMgMpk0rTQJLl4YvRKdOcMghngScKxTLl4dBcIMHw6hR0KZNuA6c\nfjpss03S0ZXyhJBhZjB1avjFDx4cvgipJHDwwZ4EnCt0K1bACy+E68P//gcHHliaHJJetMcTQgaY\nweTJpUlg5crSJNCmjU877Zwr3/ffh6QweHAoQbRuHa4bZ5wB229f//F4QqglM5g4sTQJrF4dfpGd\nOsFBB3kScM7VzA8/hOqkwYND28P++5cmhx13rJ8YPCHUgBmMH1/aO8isNAn88peeBJxzmfHDD/DS\nS+Fa89//wj77hOvMmWdCsxjXkPSEUAUzGDeuNAk0aFCaBA44wJOAcy5eK1eGLqyDB4eR0i1alCaH\nnXfO7Ht5QiiHWZgON5UENtigNAnsv78nAedcMn78EV55JVybnn0W9twzXJc6dszMym9ZlRAktad0\ncZy+FSydeTdwArAC+KOZTSjnmDolhKIi+OKL0g96v/08CTjnssuqVWFk9ODBYeru666Dq6+u2zmz\nJiFIagDMAo4FFhBWRetsZjPSjjkR6GpmJ0o6GLjLzNqWc646JYSvvgqjCj0JBCUlJRQVFSUdRl7w\nzzKz/PMMVq0KXdzrOo9SNq2p3AaYY2ZzzWwVMBDoUOaYU4F/A5jZe8AWkjLec7dpU08G6UpKSpIO\nIW/4Z5lZ/nkGjRolM6lenAmhGTAvbXt+tK+qY3aKMSbnnHMViDMhVLeOp+y9e/a3cjvnXB6Ksw2h\nLVBsZu2j7e7A2vSGZUkPAiVmNjDangkcZWZflDmXJwnnnKuFmrQhxLlEyzhgD0nNgYXAWUDnMseM\nALoCA6MEsqRsMoCa/Yecc87VTmwJwcxWS+oKjCJ0O33UzGZI6hI9/5CZjZR0oqQ5wHLgT3HF45xz\nrnI5MTDNOedc/LJ28mZJnSRNk7RG0i/LPNdd0mxJMyUdl1SMuUpSsaT5kiZEP+2TjikXSWoffQdn\nS+qWdDy5TtJcSZOj7+SYpOPJJZIek/SFpClp+7aS9JKkDyS9KKnKjqxZmxCAKcDpwBvpOyW1JLRH\ntATaA/dLyub/RzYy4A4zax39/C/pgHJNNPDyXsJ3sCXQWVKLZKPKeQYURd/JNkkHk2MeJ3wX010H\nvGRmewKvRNuVytoLqZnNNLMPynmqAzDAzFaZ2VxgDmEQnKsZb6ivm+oMvHQ159/LWjCzN4Fvyuxe\nN/A3+ve0qs6TtQmhEjsSBrCllDfgzVXtEkmTJD1anaKkW091Bl66mjHgZUnjJF2QdDB5YLu0Xptf\nAFXOAhFnt9MqSXoJKG8doevN7LkanMpbxsuo5LP9K/AAcGO0fRNwO3B+PYWWL/w7l3mHmdlnkrYB\nXpI0M7rzdXVkZlad8VyJJgQz+3UtXrYASJ81fKdon0tT3c9WUl+gJsnXBWW/hzvz05KrqyEz+yz6\nd5GkYYRqOU8ItfeFpO3N7HNJOwBfVvWCXKkySq9XHAGcLamxpJ8DewDeI6EGoi9HyumEBnxXM+sG\nXkpqTOjoMCLhmHKWpI0kbRo93hg4Dv9e1tUI4A/R4z8Aw6t6QaIlhMpIOh24G2gKPC9pgpmdYGbT\nJT0NTAdWA3+JfcHl/HObpAMI1R4fA10SjifnVDTwMuGwctl2wDCFaYkbAk+a2YvJhpQ7JA0AjgKa\nSpoH9ARuBZ6WdD4wF/hNlefxa6lzzjnInSoj55xzMfOE4JxzDvCE4JxzLuIJwTnnHOAJwTnnXMQT\ngnPOOcATgssS0TTnEyRNkfS0pCZJx1QdkraV9Hz0uJWkEzJwzgclHSJpb0kTJb0vaTdJZVccRNIO\nkuZEx2yStr+JpOclzZA0VdItac9dKuncusbp8o8nBJctVkTTHu8H/AhclP6kpHobRFnD9+oK9Ise\ntwZOzEAIBwPvEWanHGxmBwK7AL9NPyga2TsMuIYwm+WQMrH/w8xaRHEdlrbuxePAJRmI0+UZTwgu\nG70J7C7pKElvSnoWmCrpZ5L6SBoTzdR6Iay7S34jrYRxWHRsv2h7sqTLomNLJB0YPW4q6ePo8R8l\njZD0CmFitY2iRUfekzRe0qkVxNqRMJK+MWHCwLOiODpFC5QMj2J9R9J+0XsVR+d+TdKHktZdnKM1\nFT4AjgcuA/4s6VXgFuCI6NyXRRf+p4BbzWyYmd1NmKrgEQAz+97MXo8erwLGE83GambLgMWS9snE\nL8vlj6ydusIVpuhCdyIwMtrVGtjHzD6JEsASM2sjaQNgtKQXgTOA/5nZzQpzH2wcvW7HqMSBpM2i\n8xkVz1TaGtjPzJZIuhl4xczOi6YHf0/Sy2a2Ii3W7YE1qX2SegAHmtml0fY9wPtmdpqko4H/RO8B\nsCdwNLAZMEvS/Wa2BjgBeMHMXpD0ILDMzO6QdBRwtZmdkhZv+mPM7P4KPtMtomPvTNs9BjgSmFbB\nZ+EKkJcQXLZoImkCMJYw78pjhEkNx5jZJ9ExxwG/j457F9gK2D16zZ8k9QL2N7PvgA+B3STdLel4\nYFk1YnjJzJakvdd10Xu9BmzAT2c3BdgV+CxtW/x0IsbDgP4AZvYasHVUzWPA89EiT4sJs1Cm5qo/\nDkhfwU5l/q2RKMEOAO6KFpRKWQg0r805Xf7yEoLLFt+bWev0HdFEZ8vLHNfVzF4q+2JJRwAnA/0k\n3WFm/SW1IlS9XESY2Ot8woSIqRuhDcucpux7nWFms6uIO/1CXV7Jo6IL+Y9pj9cADSVtBGxhZp9X\n8Z418TAwK6pSKhuXT2TmfsJLCC6XjAL+kmo4lbRnVNe/C7DIzPoCfYFfStoaaGBmzwA9KK2qmQsc\nFD3uWMV7XZrakNS6nGM+4aeLEC0DNk3bfhM4J3p9URTjMspPEiJUIb1aQTxlz10lSX8jVEldUc7T\nOxA+C+fW8YTgskV5d6tl6/v7EqY9Hy9pCmHlt4ZAETBR0nhCSeBOQgPqa1GVT3+ge3SOfxIaascD\nW6edv+x73QQ0ihqkpwK91wsu3Mk3VJi/H0LVUstUozJQDBwoaRJwM6Vz05d9r9TjE/hpdVH6c5OA\nNVE31MvKxlKWpJ2A64EWhM9rgsI0yCm++Ixbj09/7VwdSCoGZpjZoAyc632gTdS4HJuogf0VM/tV\nnO/jco8nBOfqQGH933+bWSbGH9QLSZcCX5vZE0nH4rKLJwTnnHOAtyE455yLeEJwzjkHeEJwzjkX\n8YTgnHMO8ITgnHMu4gnBOeccAP8P/QKt8gmEtZAAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x54c4510>"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|