1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
{
"metadata": {
"name": "",
"signature": "sha256:0e14a7576f4038d6474523e0faf6c534de06cbb509045bb799ae70b4aaeef049"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter8-See page"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg203"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate rate of water flow\n",
"##initialisation of variables\n",
"H1= 12. ##in\n",
"H2= 20. ##in\n",
"z= 8. ##in\n",
"h1= 24. ##in\n",
"h= 20. ##in\n",
"k1= 0.026 ##in/sec\n",
"D= 3. ##in\n",
"##calculations\n",
"k2= H2*k1/((z/(1.-h/h1))-H1)\n",
"i= h1/(H1+H2)\n",
"A= math.pi/4.*D**2\n",
"keq= (H1+H2)/((H1/k1)+(H2/k2))\n",
"q= keq*A*i*3600.\n",
"##results\n",
"print'%s %.2f %s'% ('rate of water flow = ',q,' in^3/hr ')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"rate of water flow = 330.81 in^3/hr \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg208"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate a)How high (above the ground surface) the water will rise if piezometers are placed at points aandb.\n",
"#b.The total rate of seepage through the permeable layer per unit length\n",
"#c. The approximate average hydraulic gradient at c.\n",
"##initialisation of variables\n",
"Nd= 6.\n",
"H1= 5.6 ##m\n",
"H2= 2.2 ##m\n",
"k= 5e-5 ##cm/sec\n",
"dL= 4.1 ##m\n",
"##calculations\n",
"H= (H1-H2)/Nd\n",
"h1= 5.61-H\n",
"h2= 5.61-5.*H\n",
"q= 2.38*(H1-H2)*k/Nd\n",
"i= H/dL\n",
"##results\n",
"print'%s %.3f %s'% ('at point a,water will rise to height of = ',h1,' m ')\n",
"print'%s %.3f %s'% ('at point b,water will rise to height of =',h2,' m ')\n",
"print'%s %.e %s'% ('total rate of seepage per unit lenghth = ',q,' m^3/sec/m ')\n",
"print'%s %.3f %s'% ('average hydraulic gradient at c = ',i,' ')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"at point a,water will rise to height of = 5.043 m \n",
"at point b,water will rise to height of = 2.777 m \n",
"total rate of seepage per unit lenghth = 7e-05 m^3/sec/m \n",
"average hydraulic gradient at c = 0.138 \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg210"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate average rate of flow\n",
"##initialisation of variables\n",
"k1= 5.67 ##ft/day\n",
"k2= 11.34 ##ft/day\n",
"##from graph\n",
"Nd= 8\n",
"Nf= 2.5\n",
"H= 20\n",
"##calculations\n",
"q= math.sqrt(k1*k2)*H*Nf/Nd\n",
"##results\n",
"print'%s %.2f %s'% ('average rate of flow = ',q,' ft^3/day/ft ')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"average rate of flow = 50.12 ft^3/day/ft \n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg 212"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate seepage under the dam \n",
"##initialisation of variables\n",
"B= 6. ##m\n",
"L= 120. ##m\n",
"s= 3. ##m\n",
"T= 6. ##m\n",
"x= 2.4 ##m\n",
"H= 5. ##m\n",
"k= 0.008 ##cm/sec\n",
"##calculations\n",
"b=B/2.\n",
"a1= b/T\n",
"a2= s/T\n",
"a3= x/b\n",
"Q= 0.378*k*H*L*36*24\n",
"##results\n",
"print'%s %.2f %s'% ('seepage under the dam = ',Q,' m^3/day ')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"seepage under the dam = 1567.64 m^3/day \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg217"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate seepage rate\n",
"##initialisation of variables\n",
"b= math.pi/4. ##degrees\n",
"a= math.pi/6.##degrees\n",
"B= 10. ##ft\n",
"H= 20. ##ft\n",
"h= 25. ##ft\n",
"k= 2e-4 ##ft/min\n",
"##calculations\n",
"r= H/math.tan(b)\n",
"d= 0.3*r+(h-H)/math.tan(b)+B+h/math.tan(a)\n",
"L= d/math.cos(a)-math.sqrt((d/math.cos(a))**2-(H/math.sin(a))**2)\n",
"q= k*L*math.tan(a)*math.sin(a)*24.*60\n",
"##results\n",
"print'%s %.4f %s'% ('seepage rate = ',q,' ft^3/day/ft ')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"seepage rate = 0.9724 ft^3/day/ft \n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|