summaryrefslogtreecommitdiff
path: root/Principles_Of_Geotechnical_Engineering/Chapter12.ipynb
blob: da95df9791da9c801829f8fd4f31ff470e7426f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
{
 "metadata": {
  "name": "",
  "signature": "sha256:cc62756cbf06ddef68226804d15a2efed303c30289a23f7a88b85756c1a62af7"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter12-Shear Strength of Soil"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg378"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Determine the relationships for peak shear strength(tf) and residual shear strength(tr).\n",
      "D=50 ## in mm\n",
      "A= math.pi/4. *(D/1000.)**2\n",
      "## solving for test 1 \n",
      "N=150.\n",
      "Sp=157.5\n",
      "Sr=44.2\n",
      "Tf=Sp/A\n",
      "Tr=Sr/A\n",
      "## from graph\n",
      "k=math.tan(27/57.3)\n",
      "k1=math.tan(14.6/57.3)\n",
      "\n",
      "print'%s %.3f %s'%('Peak strength Tf = 40+ t*',k,'')\n",
      "print'%s %.3f %s'%(' Residual strength Tr = t*',k1,'')\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Peak strength Tf = 40+ t* 0.509 \n",
        " Residual strength Tr = t* 0.260 \n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg385"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Determine\n",
      "#a.Angle of friction,f\u0004\n",
      "#b.Angleuthat the failure plane makes with the major principal plane\n",
      "T3=16. ## lb/in^2\n",
      "Tf=25. ## lb/in^2\n",
      "T1=T3+Tf\n",
      "a= math.asin((T1-T3)/(T1+T3))*57.3 ## Mohr's circle\n",
      "print'%s %.2f %s'%('a)Angle of friction,a = ',a,'')\n",
      "b= 45.+ a/2.\n",
      "print'%s %.2f %s'%(' b)Angle b that the failure plane makes with the major principal plane = ',b,'')\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a)Angle of friction,a =  26.02 \n",
        " b)Angle b that the failure plane makes with the major principal plane =  58.01 \n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3-pg386"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Find the normal stress s\u0004and the shear stress tfon the failure plane.\n",
      "#b.Determine the effective normal stress on the plane of maximum shear stress\n",
      "T1=41.\n",
      "T3=16.\n",
      "a=58.\n",
      "T=(T1+T3)/2. + (T1-T3)*math.cos(2.*a/57.3)/2.\n",
      "tf=(T1-T3)*math.sin(2.*a/57.3)/2\n",
      "print'%s %.2f %s'%('a)the normal stress T = ',T,' lb/in^2')\n",
      "print'%s %.2f %s'%('(b) and the shear stress tf = ',tf,' lb/in^2')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a)the normal stress T =  23.02  lb/in^2\n",
        "(b) and the shear stress tf =  11.24  lb/in^2\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex4-pg387"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#The equation of the effective stress failure envelope for normally consolidated clayey soilistf \u0001s\u0004tan 30\u0005. A drained triaxial test was conducted with the same soil at a chamberconfining pressure of 10 lb/in.2Calculate the deviator stress at failure.\n",
      "##For normally consolidated clay, c' \u0004= 0.\n",
      "a=30.\n",
      "T3=10.\n",
      "T1=T3*(math.tan(60/57.3))**2\n",
      "Tf=T1-T3\n",
      "print'%s %.2f %s'%('The deviator stress at failure = ',Tf,' lb/in^2')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The deviator stress at failure =  19.99  lb/in^2\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex5-pg387"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Determine the shear strength parameters.\n",
      "T13=70.\n",
      "T1f=130.\n",
      "T11=T13+T1f\n",
      "\n",
      "T23=160.\n",
      "T2f=223.5\n",
      "T21=T23+T2f\n",
      "\n",
      "a= 2*(math.atan(((T11-T21)/(T13-T23))**0.5) *57.3-45)\n",
      "c= (T11-T13*((math.tan((45+a/2.)/57.3))**2)/(2*math.tan(45+a/2.)/57.3))\n",
      "d=c-267\n",
      "print('the shear strength parameter d = ',d,' kN/m^2')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "('the shear strength parameter d = ', 20.686836038348247, ' kN/m^2')\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex6-pg394"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#a.Consolidated-undrained angle of shearing resistance,f\n",
      "#b.Drained friction angle,f\u0004\n",
      "T3=12.\n",
      "Tf=9.1\n",
      "T1=T3+Tf\n",
      "u=6.8\n",
      "a=math.asin((T1-T3)/(T1+T3))\n",
      "\n",
      "a1= math.asin((T1-T3)/(T1+T3-2*u))\n",
      "\n",
      "print'%s %.1f %s'%('a)Consolidated-undrained angle of shearing resistance = ',a*57.3,' degrees')\n",
      "print'%s %.1f %s'%(' b)Drained friction angle =',a1*57.3,' degrees')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a)Consolidated-undrained angle of shearing resistance =  16.0  degrees\n",
        " b)Drained friction angle = 27.8  degrees\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex7-pg395"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#What would be the deviatorstress at failure, (\u0010sd)f, if a drained test was conducted with the same chamber allaround pressure (that is, 12 lb/in.2)?\n",
      "T3=12.\n",
      "a=27.8\n",
      "T1=T3*(math.tan(59./57.3))**2\n",
      "Tf=T1-T3\n",
      "print'%s %.1f %s'%('the deviator stress at failure = ',Tf,' lb/in^2')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the deviator stress at failure =  21.2  lb/in^2\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex8-pg400"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Estimate the average undrained shear strength of the clay [that is,cu(VST)].\n",
      "PI=28.\n",
      "OCR=3.2\n",
      "To=160.\n",
      "Kn=0.11+0.0037*PI\n",
      "Ko=OCR**0.8 * Kn\n",
      "Cu=Ko*To\n",
      "print'%s %.1f %s'%('the average undrained shear strength of the clay =',Cu,' kN/m^2')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the average undrained shear strength of the clay = 86.7  kN/m^2\n"
       ]
      }
     ],
     "prompt_number": 16
    }
   ],
   "metadata": {}
  }
 ]
}