summaryrefslogtreecommitdiff
path: root/Principles_Of_Foundation_Engineering/Chapter09_2.ipynb
blob: 7d8bec648ec3df1c1774155e07d54fbdacd33a78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
{

 "metadata": {

  "name": "",

  "signature": "sha256:a20958eb0a1cf98629a18a836583d76a2fff705e2f3370294ba37a907bebd17b"

 },

 "nbformat": 3,

 "nbformat_minor": 0,

 "worksheets": [

  {

   "cells": [

    {

     "cell_type": "heading",

     "level": 1,

     "metadata": {},

     "source": [

      "Chapter09:Sheet Pile Walls"

     ]

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex9.1:Pg-419"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#example 9.1\n",

      "\n",

      "import math\n",

      "from scipy.optimize import fsolve\n",

      "sall=30;#sigma allowed\n",

      "pi=math.pi;\n",

      "zbar=12.1; # in ft\n",

      "L1=10.0; # in ft\n",

      "L2=20.0; #in ft\n",

      "Gamma=0.12; # in lb/ft^3\n",

      "Gamma1=0.1294-0.0624; # in lb/ft^3\n",

      "phi=40*pi/180; # angle given\n",

      "Ka=(math.tan(pi/4-phi/2))**2;\n",

      "Kp=(math.tan(pi/4+phi/2))**2;\n",

      "s1=Gamma*L1*Ka;#sigma1 in Kip/ft\n",

      "s2=Gamma*L1*Ka+Gamma1*L2*Ka;#sigma2 in Kip/ft\n",

      "L3=s2/(Gamma1*(Kp-Ka)); # in ft\n",

      "print round(L3,2),\"is length in ft\"\n",

      "P=1/2.0*s1*L1+s1*L2+1/2.0*(s2-s1)*L2+1/2.0*s2*L3;# in Kip/ft\n",

      "print round(P,2),\" is force in kip/ft\"\n",

      "s5=Gamma*L1*Kp+Gamma1*L2*Kp+Gamma*L3*(Kp-Ka);#sigma5 in Kip/ft\n",

      "print round(s5,2),\" is pressure in kip/ft\"\n",

      "A1=s5/(Gamma1*(Kp-Ka)); # in ft^2\n",

      "A2=8.0*P/(Gamma1*(Kp-Ka)) # in ft^2\n",

      "A3=6.0*P*(2.0*zbar*(Gamma1*(Kp-Ka))+s5)/(Gamma1*(Kp-Ka))**2.0 # in ft^2\n",

      "A4=P*(6.0*zbar*s5+4.0*P)/(Gamma1*(Kp-Ka))**2.0 # in ft^2\n",

      "print \"A1,A2,A3,A4 respectively is  \",round(A1,1),round(A2,2),round(A3,2),round(A4,2)\n",

      "print \"slight error due to rounding off error\"\n",

      "#part(b)\n",

      "def f(x):\n",

      "    return x**4+41.7*x**3-270.5*x**2-13363*x-106863\n",

      "[x]=fsolve(f,20);\n",

      "D=1.88+x;\n",

      "print round(D,2),\" is value of D, in ft\"\n",

      "TL=L1+L2+1.3*D;\n",

      "print round(TL,2),\" is total length in ft\"\n",

      "#partc\n",

      "z=math.sqrt(2*P/(Gamma1*(Kp-Ka)));#zdash\n",

      "Mmax=P*(z+zbar)-1/2.0*(Gamma1*(Kp-Ka))*z**2*z/3.0;\n",

      "S=Mmax*12/sall;\n",

      "print round(S,2),\"is section modulus in in^3/ft\"\n",

      "\n",

      "# The answers in the book are different due to approximation while here calculations are precise"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "1.88 is length in ft\n",

        "9.96  is force in kip/ft\n",

        "12.67  is pressure in kip/ft\n",

        "A1,A2,A3,A4 respectively is   43.2 271.33 13708.16 110880.89\n",

        "slight error due to rounding off error\n",

        "21.68  is value of D, in ft\n",

        "58.19  is total length in ft\n",

        "70.06 is section modulus in in^3/ft\n"

       ]

      }

     ],

     "prompt_number": 6

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex9.2:Pg-426"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#example 9.2\n",

      "import math\n",

      "from scipy.optimize import fsolve\n",

      "sall=172.5*1000;#sigma allowed in KN/m^2\n",

      "pi=math.pi;\n",

      "c=47.0;  # in KN/m^2\n",

      "zbar=1.78; # in m\n",

      "L1=2.0; #in m\n",

      "L2=3.0; # in m\n",

      "Gamma=15.9;  # in KN/m^3\n",

      "Gamma1=19.33-9.81;  # in KN/m^3\n",

      "phi=32*pi/180;\n",

      "Ka=(math.tan(pi/4-phi/2))**2;\n",

      "Kp=(math.tan(pi/4+phi/2))**2;\n",

      "s1=Gamma*L1*Ka;#sigma1 in KN/m^2\n",

      "s2=Gamma*L1*Ka+Gamma1*L2*Ka;#sigma2 in KN/m^2\n",

      "P=1/2.0*s1*L1+s1*L2+1/2.0*(s2-s1)*L2; # in  kN/ft\n",

      "print round(P,2),\" is force in kN/m\"\n",

      "def f(x):\n",

      "    return 127.4*x**2-104.4*x-357.15\n",

      "[x]=fsolve(f,2);\n",

      "D=x;\n",

      "print round(D,2),\" is value of D in m\"\n",

      "print round(D*1.5,2),\"actual D in m\"\n",

      "L4=D*(4*c-(Gamma*L1+Gamma1*L2)-P/D)/4/c;\n",

      "print round(L4,2),\" is length in m\"\n",

      "s6=4*c-(Gamma*L1+Gamma1*L2);#sigma6 in KN/m^2\n",

      "s7=4*c+(Gamma*L1+Gamma1*L2);#sigma7 in KN/m^2\n",

      "z=P/s6;#zdash\n",

      "Mmax=P*(z+zbar)-1/2.0*s6*z**2; # in KN-m/m\n",

      "S=Mmax*12.0/sall; #  in m^3/m\n",

      "print round(S,4),\" is section modulus in m**3/m\"\n",

      "print \"is slight error due to rounding off error\"\n",

      "\n",

      "# The answers in the book are different due to approximation while here calculations are precise"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "52.25  is force in kN/m\n",

        "2.13  is value of D in m\n",

        "3.2 actual D in m\n",

        "1.17  is length in m\n",

        "0.0072  is section modulus in m**3/m\n",

        "is slight error due to rounding off error\n"

       ]

      }

     ],

     "prompt_number": 17

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex9.3:Pg-433"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#example 9.3\n",

      "import math\n",

      "from scipy.optimize import fsolve\n",

      "\n",

      "pi=math.pi;\n",

      "zbar=2.23;  # in m\n",

      "L1=2.0; # in m\n",

      "L2=3.0; # in m\n",

      "Gamma=15.9; # in KN/m^3\n",

      "Gamma1=19.33-9.81; # in KN/m^3\n",

      "phi=32*pi/180;\n",

      "Ka=(math.tan(pi/4-phi/2))**2;\n",

      "Kp=(math.tan(pi/4+phi/2))**2;\n",

      "s1=Gamma*L1*Ka;#sigma1 in KN/m^2\n",

      "s2=Gamma*L1*Ka+Gamma1*L2*Ka;#sigma2 in KN/m^2\n",

      "L3=s2/(Gamma1*(Kp-Ka)); # in m\n",

      "print round(L3,2),\"length in m\"\n",

      "P=1/2.0*s1*L1+s1*L2+1/2.0*(s2-s1)*L2+1/2.0*s2*L3;\n",

      "print round(P,2),\"force in kN/m\"\n",

      "def f(x):\n",

      "    return x**3+6.99*x**2-14.55\n",

      "[x]=fsolve(f,1.4);\n",

      "D=L3+x;\n",

      "print round(D,2),\"value of D in m\"\n",

      "AL=1.4*D;\n",

      "print round(AL,2),\"actual length in m\"\n",

      "#partb\n",

      "L4=1.4;\n",

      "F=P-1/2.0*(Gamma1*(Kp-Ka)*L4**2);\n",

      "print round(F,2),\"anchor force in kN/m\"\n",

      "#partc\n",

      "def f(x):\n",

      "    return x**2+6.682*x-14.44\n",

      "[x]=fsolve(f,1.7);\n",

      "z=x+2;\n",

      "Mmax=-1/2.0*s1*L1*(x+2/3.0)+F*(x+1)-s1*x*x/2-1/2.0*Ka*Gamma1*x**3/3.0;\n",

      "print round(Mmax,2),\" is maximum moment in kN-m/m\" \n",

      "\n",

      "# The answers in the book are different due to approximation while here calculations are precise"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "0.66 length in m\n",

        "58.38 force in kN/m\n",

        "1.98 value of D in m\n",

        "2.78 actual length in m\n",

        "30.88 anchor force in kN/m\n",

        "43.74  is maximum moment in kN-m/m\n"

       ]

      }

     ],

     "prompt_number": 18

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex9.4:Pg-439"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#example 9.4\n",

      "\n",

      "Gamma=15.9; # in KN/m^3\n",

      "Gamma1=19.33-9.81; # in KN/m^3\n",

      "GD=0.23;  # from fig. 9.16\n",

      "CDL1=1.172; # from fig. 9.19\n",

      "L1=2; # in m\n",

      "L2=3; # in m\n",

      "Dth=(L1+L2)*GD*CDL1;\n",

      "print round(Dth,2),\"theoritical depth in m\"\n",

      "Dac=1.4*Dth;\n",

      "print round(Dac,2),\"actual depth in m\"\n",

      "print \"approximate it as 2 m\"\n",

      "#part(b)\n",

      "CFL1=1.073;\n",

      "GF=0.07;\n",

      "Gammaa=(Gamma*L1**2+Gamma1*L2**2+2*Gamma*L1*L2)/(L1+L2)**2; # in KN/m^3\n",

      "F=Gammaa*(L1+L2)**2*GF*CFL1; # in KN/m\n",

      "print round(F,2),\"force in kN/m\"\n",

      "#part(c)\n",

      "GM=0.021; # from fig. 9.18\n",

      "CML1=1.036; # from fig. 9.21\n",

      "Mmax=Gammaa*(L1+L2)**3*GM*CML1; # in kN-m/m\n",

      "print round(Mmax,2),\"maximum moment in kN-m/m\""

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "1.35 theoritical depth in m\n",

        "1.89 actual depth in m\n",

        "approximate it as 2 m\n",

        "25.54 force in kN/m\n",

        "36.99 maximum moment in kN-m/m\n"

       ]

      }

     ],

     "prompt_number": 20

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex9.5:Pg-442"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#example 9.5\n",

      "import math\n",

      "import matplotlib.pyplot as plt\n",

      "import numpy\n",

      "Mmax=43.72; # in kN-m/m\n",

      "sp=[\"PSA-31\",\"PSA-23\"];#sheet pile\n",

      "H=[7.9,7.9] # in m\n",

      "I=[4.41e-6,5.63e-6]; # in m^4/m\n",

      "p=[0.00466,0.00365];\n",

      "S=[10.8e-5,12.8e-5]; # in m^3/m\n",

      "Md=[18.63,22.08]; # kn-m/m\n",

      "Logp=numpy.zeros(2)\n",

      "k=numpy.zeros(2)\n",

      "print \"SheetPile    I(m**4/m)    H(m)    p\\t     Logp    S(m**3/m)    Md(kN-m/m)   Md/Mmax \\n\"\n",

      "for i in range(0,2):\n",

      "    Logp[i]=math.log10(p[i]);\n",

      "    k[i]=Md[i]/Mmax;\n",

      "    print sp[i],\"\\t   \",I[i],\"    \",H[i],\" \",p[i],\"   \",round(Logp[i],2),\"   \",S[i],\"   \",Md[i],\"\\t \",round(k[i],3)\n",

      "    \n",

      "\n",

      "plt.plot(Logp,k);\n",

      "plt.title(\"Ex9.5\")\n",

      "plt.xlabel(\"LogP\")\n",

      "plt.ylabel(\"Md/Mmax\")\n",

      "plt.show()\n",

      "\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "SheetPile    I(m**4/m)    H(m)    p\t     Logp    S(m**3/m)    Md(kN-m/m)   Md/Mmax \n",

        "\n",

        "PSA-31 \t    4.41e-06      7.9   0.00466     -2.33     0.000108     18.63 \t  0.426\n",

        "PSA-23 \t    5.63e-06      7.9   0.00365     -2.44     0.000128     22.08 \t  0.505\n"

       ]

      }

     ],

     "prompt_number": 28

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex9.6:Pg-445"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#example 9.6\n",

      "\n",

      "import math\n",

      "from scipy.optimize import fsolve\n",

      "\n",

      "pi=math.pi;\n",

      "R=0.6;\n",

      "L1=10.0; # in ft\n",

      "L2=20.0; #in ft\n",

      "Gammasat=122.4; # in lb/ft^3\n",

      "l1=5; # in ft\n",

      "Gamma=110.0; # in lb/ft^3\n",

      "C=0.68;\n",

      "L=L1+L2; # in ft\n",

      "Gammaw=62.4; # in lb/ft^3\n",

      "Gamma1=Gammasat-Gammaw;#gammadash in  lb/ft^3\n",

      "Gammaav=(Gamma*L1+Gamma1*L2)/(L1+L2); # in lb/ft^3\n",

      "phi=35.0*pi/180;\n",

      "Ka=(math.tan(pi/4-phi/2))**2;\n",

      "sa=C*Ka*Gammaav*L;#sigmaa in lb/ft^2\n",

      "sp=R*sa;#sigmap # in lb/ft^2\n",

      "def f(x):\n",

      "    return x**2+50*x-1000\n",

      "[x]=fsolve(f,15);\n",

      "D=x;#in ft\n",

      "print round(D,2),\" is depth in ft\"\n",

      "R=L/D*(L-2*l1)/(2*L+D-2*l1);\n",

      "print \"value of R=\",round(R,2),\" is OK\\n\"\n",

      "#partb\n",

      "F=sa*(L-R*D); # in lb/ft\n",

      "print round(F,2),\" is Force in lb/ft\"\n",

      "#partc\n",

      "Mmax=0.5*sa*L**2*((1-R*D/L)**2-(2*l1/L)*(1-R*D/L)); # in lb-ft/ft\n",

      "print round(Mmax,2),\"maximum moment lb-ft/ft\"\n",

      "\n",

      "# The answers in the book are different due to approximation while here calculations are precise"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "15.31  is depth in ft\n",

        "value of R= 0.6  is OK\n",

        "\n",

        "8821.24  is Force in lb/ft\n",

        "47693.02 maximum moment lb-ft/ft\n"

       ]

      }

     ],

     "prompt_number": 31

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex9.7:Pg-451"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#example 9.7\n",

      "import math\n",

      "from scipy.optimize import fsolve\n",

      "\n",

      "pi=math.pi;\n",

      "zbar=3.2; # in m\n",

      "c=41; # in KN/m^2\n",

      "L1=3; # in m\n",

      "L2=6; # in m\n",

      "Gamma=17;# in KN/m^3\n",

      "Gamma1=20-9.81; # in KN/m^3\n",

      "phi=35*pi/180;\n",

      "Ka=(math.tan(pi/4-phi/2))**2;\n",

      "Kp=(math.tan(pi/4+phi/2))**2;\n",

      "s1=Gamma*L1*Ka;#sigma1 in kN/m**2\n",

      "s2=Gamma*L1*Ka+Gamma1*L2*Ka;#sigma2 in kN/m**2\n",

      "P=1/2.0*s1*L1+s1*L2+1/2.0*(s2-s1)*L2;\n",

      "print round(P,2),\"Force in kN/m\"\n",

      "s6=4*c-(Gamma*L1+Gamma1*L2);#sigma6 in kN/m**2\n",

      "print round(s6,2),\"pressure in kN/m**2\"\n",

      "def f(x):\n",

      "    return x**2+15*x-25.43\n",

      "[x]=fsolve(f,1.6);\n",

      "D=x; # in m\n",

      "print round(D,1),\"depth in m\"\n",

      "F=P-s6*D; # in kN/m\n",

      "print round(F,2),\"force in kN/m\"\n",

      "print \"slight error due to rounding off\"\n",

      "\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "153.36 Force in kN/m\n",

        "51.86 pressure in kN/m**2\n",

        "1.5 depth in m\n",

        "73.61 force in kN/m\n",

        "slight error due to rounding off\n"

       ]

      }

     ],

     "prompt_number": 35

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex9.8:pg-458"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#example 9.8\n",

      "import math\n",

      "pi=math.pi;\n",

      "Gamma=105.0; # in lb/ft^3\n",

      "Cov=14.0;\n",

      "B=15/12.0; # in inch\n",

      "Ka=0.26;\n",

      "phi=35.0*pi/180; # given angle in degree\n",

      "H=37.5/12; # in inch\n",

      "h=15/12.0; # in inch\n",

      "t=6/12.0; # in inch\n",

      "Gc=150.0;#gamma concrete in lb/ft^3\n",

      "W=H*t*Gc; # in lb/ft\n",

      "k=4.5;#kp*cos(delta)\n",

      "Pu=1/2.0*Gamma*H**2*(k-Ka*math.cos(phi)); # in lb/ft\n",

      "print round(Pu,2),\"force in lb/ft\"\n",

      "Pus=((Cov+1)/(Cov+H/h))*Pu; # in lb/ft\n",

      "print round(Pus,2),\"force in lb/ft\"\n",

      "Be=0.227*(H+h)+B;\n",

      "Pu=Pus*Be; # in lb/ft\n",

      "print round(Pu,2),\" is resistance of anchor plate in lb/ft\"\n",

      "\n",

      "# The answers in the book are different due to approximation while here calculations are precise"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "2197.94 force in lb/ft\n",

        "1998.12 force in lb/ft\n",

        "4482.04  is resistance of anchor plate in lb/ft\n"

       ]

      }

     ],

     "prompt_number": 37

    }

   ],

   "metadata": {}

  }

 ]

}